Research Papers

Electrical Contact Resistance Estimation With Application to Electric Vehicle Charging Cable

[+] Author and Article Information
Jocelyn Sabatier

IMS Laboratory,
Bordeaux University,
Talence 33405, France
e-mail: jocelyn.sabatier@u-bordeaux.fr

Mathieu Chevrié

IMS Laboratory,
Bordeaux University,
Talence 33405, France
e-mail: mathieu.chevrie@u-bordeaux.fr

Christophe Farges

IMS Laboratory,
Bordeaux University,
Talence 33405, France
e-mail: christophe.farges@u-bordeaux.fr

Franck Guillemard

Scientific and Future Technologies Department,
PSA Groupe,
Vélizy-Villacoublay 78943, France
e-mail: franck.guillemard@mpsa.com

Laetitia Pradere

Scientific and Future Technologies Department,
PSA Groupe,
Vĺizy-Villacoublay 78943, France
e-mail: laetitia.pradere@mpsa.com

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received November 9, 2016; final manuscript received August 1, 2017; published online November 10, 2017. Assoc. Editor: Shankar Coimbatore Subramanian.

J. Dyn. Sys., Meas., Control 140(4), 041003 (Nov 10, 2017) (7 pages) Paper No: DS-16-1545; doi: 10.1115/1.4037531 History: Received November 09, 2016; Revised August 01, 2017

The paper proposes a method to estimate the contact resistance inside the outlet between a charging cable and an electric vehicle. First, an electrothermal model of some components close to the contact area inside the vehicle outlet (in the female part of the outlet) and of the harness inside the vehicle is proposed. The charging cable and the associated components are the male parts of the outlet and are not modeled as these components are not identical for each charging. They also depend on the mode and the charging infrastructure used. It is only supposed that the charging cable evacuates an unknown thermal heat rate. A linear approximation of the electrothermal model is then obtained and used to design a closed-loop estimator of the total heat rate at the contact area. Using this information, a least square method is used to estimate the contact resistance that can be deduced from the first values of the total heat rate after a step variation of the current in the charging cable.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Braunovic, M. , Myshkin, N. K. , and Konchits, V. V. , 2006, Electrical Contacts: Fundamentals, Applications and Technology, CRC Press, Boca Raton, FL. [CrossRef]
Wilson, W. E. , Angadi, S. V. , and Jackson, R. L. , 2010, “ Surface Separation and Contact Resistance Considering Sinusoidal Elastic-Plastic Multi-Scale Rough Surface Contact,” Wear, 268(1–2), pp. 190–201. [CrossRef]
Greenwood, J. A. , and Williamson, J. B. P. , 1966, “ Contact of Nominally Flat Surfaces,” Proc. R. Soc. London A, 295(1442), pp. 300–319. [CrossRef]
Singer, M. , and Kshonze, K. , 1991, “ Electrical Resistance of Random Rough Contacting Surfaces Using Fractal Surface Modeling,” 37th IEEE Holm Conference on Electrical Contacts, Chicago, IL, Oct. 6–9, pp. 73–82.
Tristani, L. , 2000, “ Fiabilisation des connecteurs électriques soumis à des vibrations,” Ph.D. thesis, Université de Paris Sud, Orsay, France.
Grandvuillemin, J. , 2009, “ Etudes des phénomènes électrothermiques régissant les lignes d'alimentation d'un réseau électrique automobile—application au dimensionnement des faisceaux électriques et leurs protections,” Ph.D. thesis, Université de Franche-Comté, Besançon, France.
Woo, K. , and Thomas, T. , 1980, “ Contact of Rough Surfaces: A Review of Experimental Work,” Wear, 58(2), pp. 331–340. [CrossRef]
Anwar, S. , Zou, C. , and Manzie, C. , 2014, “ Distributed Thermal-Electrochemical Modeling of a Lithium-Ion Battery to Study the Effect of High Charging Rates,” IFAC Proc. Vol., 47(3), pp. 6258–6263. [CrossRef]
Zou, C. , Manzie, C. , and Nešić, D. , 2016, “ A Framework for Simplification of PDE-Based Lithium-Ion Battery Models,” IEEE Trans. Control Syst. Technol., 24(5), pp. 1594–1609. [CrossRef]
Dominguez-Pumar, M. , Atienza, M. T. , Kowalski, L. , Novio, S. , Gorreta, S. , Jimenez, V. , and Silvestre, S. , 2017, “ Heat Flow Dynamics in Thermal Systems Described by Diffusive Representation,” IEEE Trans. Ind. Electron., 64(1), pp. 664–673. [CrossRef]
Li, W. , Cao, J. , and Zhang, X. , 2010, “ Electrothermal Analysis of Induction Motor With Compound Cage Rotor Used for PHEV,” IEEE Trans. Ind. Electron., 57(2), pp. 660–668. [CrossRef]
Cai, X. , Cheng, M. , Zhu, S. , and Zhang, J. , 2016, “ Thermal Modeling of Flux-Switching Permanent-Magnet Machines Considering Anisotropic Conductivity and Thermal Contact Resistance,” IEEE Trans. Ind. Electron., 63(6), pp. 3355–3365. [CrossRef]
Nguyen, H. C. , 2013, “ Modélisation électrothermique de système électrique électronique automobile et pilotage de mosfet intelligents pour protéger les faisceaux, éviter les courts circuits aggravés et diminuer la masse de câblage,” Ph.D. thesis, Université de Bordeaux 1, Bordeaux, France.
Chevrié, M. , Farges, C. , Sabatier, J. , Guillemard, F. , Pradere, L. , and Airimitoaie, T.-B. , 2016, “ Finite Length Wire Electro-Thermal Modeling for Automotive Applications Using H2-Norm Based Approximation of a Fractional Model,” European Control Conference (ECC), Aalborg, Denmark, June 29–July 1, pp. 1236–1241 https://controls.papercept.net/conferences/conferences/ECC16/program/ECC16_ContentListWeb_3.html
Chevrié, M. , 2016, “ Modélisation électrothermique de composants électriques et électroniques automobiles et estimation des résistances de contact dans les connecteurs,” Ph.D. thesis, Bordeaux University, Bordeaux, France.
Oustaloup, A. , 1995, La dérivation non-entière: théorie, synthèse et applications, Hermès, Paris, France.
Malti, R. R. , Sabatier, J. , and Akçay, H. , 2009, “ Thermal Modeling and Identification of an Aluminum Rod Using Fractional Calculus,” 15th IFAC Symposium on System Identification (SYSID), Saint-Malo, France, July 6–8, pp. 958–963. https://hal.archives-ouvertes.fr/hal-00399497/document
Sabatier, J. , Farges, C. , Nguyen, H. , Moreau, X. , and Deletage, J. , 2011, “ Transistor Thermal Fractional Modeling for Junction Temperature Estimation,” 18th IFAC World Congress, Milan, Italy, Aug. 28–Sept. 2, pp. 10806–10811.
Sabatier, J. , Aoun, M. , Oustaloup, A. , Grégoire, G. , Ragot, F. , and Roy, P. , 2006, “ Fractional System Identification for Lead Acid Battery State of Charge Estimation,” Signal Processing, 86(10), pp. 2645–2657. [CrossRef]
Penrose, R. , 1956, “ On Best Approximate Solutions of Linear Matrix Equations,” Math. Proc. Cambridge Philos. Soc., 52(1), pp. 17–19. [CrossRef]


Grahic Jump Location
Fig. 1

Front view representation of a car outlet

Grahic Jump Location
Fig. 2

Harness between the car outlet and the converter

Grahic Jump Location
Fig. 3

Scheme of the considered thermal chain

Grahic Jump Location
Fig. 4

Electrical scheme of the testing bench

Grahic Jump Location
Fig. 5

Heat rates ϕJ, ϕr↔ca and ϕt generated by an electrical current in the charging cable (top) and zoom in the first instants (bottom)

Grahic Jump Location
Fig. 6

Closed-loop diagram to estimate the unknown total heat rate at the contact area

Grahic Jump Location
Fig. 7

Thermocouple location inside the cylindrical part of the tab

Grahic Jump Location
Fig. 8

Bode diagrams of G(s) for various ambient temperatures (top plots) and magnification around low frequencies (bottom plots)

Grahic Jump Location
Fig. 9

Open-loop Nichols locus (top) and enlargement around ωu (bottom)

Grahic Jump Location
Fig. 10

True total heat rate, estimated total heat rate, and rebuilt heat rate by the least squares method




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In