0
Research Papers

A New Nonsingular Terminal Sliding Mode Control for Rigid Spacecraft Attitude Tracking

[+] Author and Article Information
Zeng Wang

School of Electro-Mechanical Engineering,
Xidian University,
Xi'an 710071, China
e-mail: zengwang@stu.xidian.edu.cn

Yuxin Su

School of Electro-Mechanical Engineering,
Xidian University,
Xi'an 710071, China
e-mail: yxsu@mail.xidian.edu.cn

Liyin Zhang

School of Electro-Mechanical Engineering,
Xidian University,
Xi'an 710071, China
e-mail: liyinzhang@stu.xidian.edu.cn

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received January 19, 2017; final manuscript received September 20, 2017; published online December 19, 2017. Assoc. Editor: Yang Shi.

J. Dyn. Sys., Meas., Control 140(5), 051006 (Dec 19, 2017) (9 pages) Paper No: DS-17-1038; doi: 10.1115/1.4038094 History: Received January 19, 2017; Revised September 20, 2017

This paper addresses the finite time attitude tracking for rigid spacecraft with inertia uncertainties and external disturbances. First, a new nonsingular terminal sliding mode (NTSM) surface is proposed for singularity elimination. Second, a robust controller based on NTSM is designed to solve the attitude tracking problem. It is proved that the new NTSM can converge to zero within finite time, and the attitude tracking errors converge to an arbitrary small bound centered on equilibrium point within finite time and then go to equilibrium point asymptotically. The appealing features of the proposed control are fast convergence, high precision, strong robustness, and easy implementation. Simulations verify the effectiveness of the proposed approach.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Young, K. K. , 1978, “ Design of Variable Structure Model Following Control System,” IEEE Trans. Autom. Control, 23(6), pp. 1079–1085. [CrossRef]
Fu, L. C. , and Liao, L. T. , 1990, “ Globally Stable Robust Tracking of Nonlinear Systems Using Variable Structure Control and With an Application to a Robotic Manipulator,” IEEE Trans. Autom. Control, 35(12), pp. 1345–1350. [CrossRef]
Xia, Y. Q. , Zhu, Z. , Fu, M. , and Wang, S. , 2011, “ Attitude Tracking of Rigid Spacecraft With Bounded Disturbances,” IEEE Trans. Ind. Electron., 58(2), pp. 647–659. [CrossRef]
Pukdeboon, C. , and Zinober, A. S. I. , 2012, “ Control Lyapunov Function Optimal Sliding Mode Controllers for Attitude Tracking of Spacecraft,” J. Franklin Inst., 349(2), pp. 456–475. [CrossRef]
Cong, B. L. , Liu, X. D. , and Chen, Z. , 2013, “ Backstepping Based Adaptive Sliding Mode Control for Spacecraft Attitude Maneuvers,” Aerosp. Sci. Technol., 30(1), pp. 1–7. [CrossRef]
Yeh, F. K. , 2010, “ Sliding-Mode Adaptive Attitude Controller Design for Spacecrafts With Thrusters,” IET Control Theory Appl., 4(7), pp. 1254–1264. [CrossRef]
Boskvic, J. D. , Li, S. M. , and Mehra, R. K. , 2001, “ Robust Adaptive Variable Structure Control of Spacecraft Under Control Input Saturation,” J. Guid., Control, Dyn., 24(1), pp. 14–22. [CrossRef]
Bhat, S. P. , and Bernstein, D. S. , 2000, “ Finite-Time Stability of Continuous Autonomous Systems,” SIAM J. Control Optim., 38(3), pp. 751–766. [CrossRef]
Zou, A. M. , 2014, “ Finite-Time Output Feedback Attitude Tracking Control for Rigid Spacecraft,” IEEE Trans. Control Syst. Technol., 22(1), pp. 338–345. [CrossRef]
Du, H. , and Li, S. H. , 2011, “ Finite-Time Attitude Tracking Control of Spacecraft With Application to Attitude Synchronization,” IEEE Trans. Autom. Control, 56(11), pp. 2711–2717. [CrossRef]
Venkataraman, S. T. , and Gulati, S. , 1991, “ Terminal Sliding Modes: A New Approach to Nonlinear Control Systems,” Fifth International Conference on Advanced Robotics (ICAR), Pisa, Italy, June 19–22, pp. 443–448.
Man, Z. , Paplinski, A. P. , and Wu, H. R. , 1994, “ A Robust MIMO Terminal Sliding Mode Control Scheme for Rigid Robotic Manipulators,” IEEE Trans. Autom. Control, 39(12), pp. 2464–2469. [CrossRef]
Yu, X. , and Man, Z. , 2002, “ Fast Terminal Sliding Mode Control Design for Nonlinear Dynamic Systems,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 49(2), pp. 261–264. [CrossRef]
Xiao, B. , Hu, Q. , Wang, D. , and Poh, E. K. , 2013, “ Attitude Tracking Control of Rigid Spacecraft With Actuator Misalignment and Fault,” IEEE Trans. Control Syst. Technol., 21(6), pp. 2360–2366. [CrossRef]
Jin, E. , and Sun, Z. , 2008, “ Robust Controllers Design With Finite Time Convergence for Rigid Spacecraft Attitude Tracking Control,” Aerosp. Sci. Technol., 12(4), pp. 324–330. [CrossRef]
Li, S. , Wang, Z. , and Fei, S. , 2011, “ Comments on the Paper: Robust Controllers Design With Finite Time Convergence for Rigid Spacecraft Attitude Tracking Control,” Aerosp. Sci. Technol., 15(3), pp. 193–195. [CrossRef]
Zhao, L. , and Jia, Y. , 2015, “ Finite-Time Attitude Tracking Control for a Rigid Spacecraft Using Time-Varying Terminal Sliding Mode Techniques,” Int. J. Control, 88(6), pp. 1150–1162. [CrossRef]
Pukdeboon, C. , 2014, “ Nonsingular Terminal Sliding Mode Based Finite-Time Control for Spacecraft Attitude Tracking,” Int. J. Control, Autom., Syst., 12(3), pp. 530–540. [CrossRef]
Feng, Y. , Yu, X. , and Man, Z. , 2002, “ Non-Singular Terminal Sliding Mode Control of Rigid Manipulators,” Automatica, 38(12), pp. 2159–2167. [CrossRef]
Zou, A. M. , Kumar, K. D. , Hou, Z. G. , and Liu, X. , 2011, “ Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network,” IEEE Trans. Syst., Man, Cybern., Part B: Cybern., 41(4), pp. 950–963. [CrossRef]
Lu, K. , and Xia, Y. , 2013, “ Adaptive Attitude Tracking Control for Rigid Spacecraft With Finite-Time Convergence,” Automatica, 49(12), pp. 3591–3599. [CrossRef]
Lu, K. , Xia, Y. , Yu, C. , and Liu, H. , 2016, “ Finite-Time Tracking Control of Rigid Spacecraft Under Actuator Saturations and Faults,” IEEE Trans. Autom. Sci. Eng., 13(1), pp. 368–381. [CrossRef]
Luo, W. , Chu, Y. , and Ling, K. , 2005, “ Inverse Optimal Adaptive Control for Attitude Tracking of Spacecraft,” IEEE Trans. Autom. Control, 50(11), pp. 1639–1654. [CrossRef]
Bohn, J. , and Sanyal, A. K. , 2016, “ Almost Global Finite-Time Stabilization of Rigid Body Attitude Dynamics Using Rotation Matrices,” Int. J. Robust Nonlinear control, 26(9), pp. 2008–2022. [CrossRef]
Ding, S. , and Li, S. , 2009, “ Stabilization of the Attitude of a Rigid Spacecraft With External Disturbances Using Finite-Time Control Techniques,” Aerosp. Sci. Technol., 13(4), pp. 256–265. [CrossRef]
Yu, S. , Yu, X. , Shirinzadeh, B. , and Man, Z. , 2005, “ Continuous Finite-Time Control for Robotic Manipulators With Terminal Sliding Mode,” Automatica, 41(11), pp. 1957–1964. [CrossRef]
Wang, L. , Chai, T. , and Zhai, L. , 2009, “ Neural-Network-Based Terminal Sliding Mode Control of Robotic Manipulators Including Actuator Dynamics,” IEEE Trans. Ind. Electron., 56(9), pp. 3296–3304. [CrossRef]
Slotine, J. J. E. , and Li, W. , 1991, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ.
Chen, Z. , and Huang, J. , 2009, “ Attitude Tracking and Disturbance Rejection of Rigid Spacecraft by Adaptive Control,” IEEE Trans. Autom. Control, 54(3), pp. 600–605. [CrossRef]
Khalil, H. , 2002, Nonlinear Systems, Prentice Hall, Englewood Cliffs, NJ.

Figures

Grahic Jump Location
Fig. 1

Comparison of NTSMs

Grahic Jump Location
Fig. 2

NTSMC without boundary layer: (a) attitude tracking errors of NTSMC, (b) angular velocity errors of NTSMC, and (c) control inputs of NTSMC

Grahic Jump Location
Fig. 3

NTSMC with boundary layer: (a) attitude tracking errors of CNTSMC, (b) angular velocity errors of CNTSMC, and (c) control inputs of CNTSMC

Grahic Jump Location
Fig. 4

CNTSMC with high frequency ωd and large disturbance d: (a) attitude tracking errors of CNTSMC, (b) angular velocity errors of CNTSMC, and (c) control inputs of CNTSMC

Grahic Jump Location
Fig. 5

Comparison of the AFNTSMC and NTSMC: (a) comparison of the attitude tracking errors, (b) comparison of the angular velocity errors, and (c) comparison of the control inputs

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In