Technical Brief

A Model-Free Continuous Velocity Observer Formulation With Self-Tuning for Mechatronic Systems

[+] Author and Article Information
Meryem Deniz

Department of Electrical and Electronics Engineering,
Izmir Institute of Technology,
Urla 35430, Izmir, Turkey
e-mail: meryemdeniz@iyte.edu.tr

Alper Bayrak

Department of Electrical and Electronics Engineering,
Abant Izzet Baysal University,
Bolu 14280, Turkey
e-mail: alperbayrak@ibu.edu.tr

Enver Tatlicioglu

Department of Electrical and Electronics Engineering,
Izmir Institute of Technology,
Urla 35430, Izmir, Turkey
e-mail: envertatlicioglu@iyte.edu.tr

Erkan Zergeroglu

Department of Computer Engineering,
Gebze Technical University,
Gebze 41400, Kocaeli, Turkey
e-mail: e.zerger@gtu.edu.tr

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received June 3, 2016; final manuscript received October 10, 2017; published online December 19, 2017. Assoc. Editor: Azim Eskandarian.

J. Dyn. Sys., Meas., Control 140(5), 054501 (Dec 19, 2017) (4 pages) Paper No: DS-16-1286; doi: 10.1115/1.4038373 History: Received June 03, 2016; Revised October 10, 2017

In this study, the design of a smooth robust velocity observer for a class of uncertain nonlinear mechatronic systems is presented. The proposed velocity observer does not require a priori knowledge of the upper bounds of the uncertain system dynamics and introduces time-varying observer gains for uncertainty compensation. Practical stability of the velocity observation error is ensured via Lyapunov-type stability analysis. Experimental results obtained from Phantom Omni haptic device are presented to illustrate the performance of the proposed velocity observer.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Su, Y. X. , Zheng, C. H. , Mueller, P. C. , and Duan, B. Y. , 2006, “ A Simple Improved Velocity Estimation for Low-Speed Regions Based on Position Measurements Only,” IEEE Trans. Control Syst. Technol., 14(5), pp. 937–942. [CrossRef]
Arimoto, S. , Parra-Vega, V. , and Naniwa, T. , 1994, “ A Class of Linear Velocity Observers for Nonlinear Mechanical Systems,” Asian Control Conference, Tokyo, Japan, July 27–30, pp. 633–636.
Abdessameud, A. , and Khelfi, M. F. , 2006, “ A Variable Structure Observer for the Control of Robot Manipulators,” Int. J. Appl. Math. Compt. Sci., 16(2), pp. 189–196. https://eudml.org/doc/207784
de Wit, C. C. , and Slotine, J. , 1991, “ Sliding Observers for Robot Manipulators,” Automatica, 27(5), pp. 859–864. [CrossRef]
Astolfi, A. , Ortega, R. , and Venkatraman, A. , 2010, “ A Globally Exponentially Convergent Immersion and Invariance Speed Observer for Mechanical Systems With Non-Holonomic Constraints,” Automatica, 46(5), pp. 182–189. [CrossRef]
Namvar, M. , 2009, “ A Class of Globally Convergent Velocity Observers for Robotic Manipulators,” IEEE Trans. Autom. Control, 54(8), pp. 1956–1961. [CrossRef]
Romero, J. G. , and Ortega, R. , 2015, “ Two Globally Convergent Adaptive Speed Observers for Mechanical Systems,” Automatica, 60, pp. 7–11. [CrossRef]
Choi, J.-H. , Misawa, E. A. , and Young, G. E. , 1999, “ A Study on Sliding Mode State Estimation,” ASME J. Dyn. Syst. Meas. Control, 121(6), pp. 255–260. [CrossRef]
Davila, J. , Fridman, L. , and Levant, A. , 2005, “ Second-Order Sliding-Mode Observer for Mechanical Systems,” IEEE Trans. Autom. Control, 50(11), pp. 1785–1789. [CrossRef]
Dawson, D. M. , Qu, Z. , and Carroll, J. C. , 1992, “ On the State Observation and Output Feedback Problems for Nonlinear Uncertain Dynamic Systems,” Syst. Control Lett., 18(2), pp. 217–222. [CrossRef]
González, I. , Salazar, S. , and Lozano, R. , 2014, “ Chattering-Free Sliding Mode Altitude Control for a Quad-Rotor Aircraft: Real-Time Application,” J. Intell. Rob. Syst., 73(1–4), pp. 137–155. [CrossRef]
Ramirez-Rodriguez, H. , Parra-Vega, V. , Sanchez-Orta, A. , and Garcia-Salazar, O. , 2014, “ Robust Backstepping Control Based on Integral Sliding Modes for Tracking of Quadrotors,” J. Intell. Rob. Syst., 73(1–4), pp. 51–66. [CrossRef]
Walcott, B. , and Zak, S. , 1987, “ State Observation of Nonlinear Uncertain Dynamical Systems,” IEEE Trans. Autom. Control, 32(2), pp. 166–170. [CrossRef]
Xiong, Y. , and Saif, M. , 2001, “ Sliding Mode Observer for Nonlinear Uncertain Systems,” IEEE Trans. Autom. Control, 46(12), pp. 2012–2017. [CrossRef]
Xian, B. , de Queiroz, M. , Dawson, D. , and McIntyre, M. , 2004, “ A Discontinuous Output Feedback Controller and Velocity Observer for Nonlinear Mechanical Systems,” Automatica, 40(4), pp. 695–700. [CrossRef]
Atassi, A. N. , and Khalil, H. K. , 1999, “ A Separation Principle for the Stabilization of a Class of Nonlinear Systems,” IEEE Trans. Autom. Control, 44(9), pp. 1672–1687. [CrossRef]
Chen, J. , Behal, A. , and Dawson, D. , 2008, “ Robust Feedback Control for a Class of Uncertain MIMO Nonlinear Systems,” IEEE Trans. Autom. Control, 53(2), pp. 591–596. [CrossRef]
Teel, A. , and Praly, L. , 1994, “ Global Stabilizability and Observability Imply Semi Global Stabilizability by Output Feedback,” Syst. Control Lett., 22(2), pp. 313–325. [CrossRef]
Dasdemir, J. , and Zergeroglu, E. , 2015, “ A New Continuous High-Gain Controller Scheme for a Class of Uncertain Nonlinear Systems,” Int. J. Robust Nonlinear Control, 25(1), pp. 125–141.
Lewis, F. , Dawson, D. , and Abdallah, C. , 2004, Robot Manipulator Control: Theory and Practice, Marcel Dekker, New York.


Grahic Jump Location
Fig. 1

Velocity observer x̂˙(t)

Grahic Jump Location
Fig. 2

Position observation error x̃(t)

Grahic Jump Location
Fig. 3

Time-varying observer gain β̂(t)

Grahic Jump Location
Fig. 4

Time-varying observer gain K(t)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In