Dynamic Interactions Between Long, High Speed Trains of Air Cushion Vehicles and Their Guideways

[+] Author and Article Information
James F. Wilson

Department of Civil Engineering, Duke University, Durham, N. C.

Sherrill B. Biggers

Department of Civil Engineering, University of Kentucky, Lexington, Ky.

J. Dyn. Sys., Meas., Control 93(1), 16-24 (Mar 01, 1971) (9 pages) doi:10.1115/1.3426454 History: Received July 02, 1970; Online July 13, 2010


Trains of high speed air cushion vehicles traversing simple spans are modeled as uniform pressure segments traveling at arbitrary speeds over identical Bernoulli-Euler beams. Series solutions are found for the transient span and vehicle responses where the trains overlap several spans at a time. Elastic foundation, span tension, and span damping effects are included. Conclusions reached after studying some realistic numerical examples for constant-speed trains on elevated spans are: (a) for trains which are longer than one span length, the dynamic deflection factors (maximum ratios of dynamic to static deflection at midspan) approach 2.0 at speeds between 300 and 600 mph, and occur as the end of the train approaches, midspan; (b) these dynamic deflections may be reduced by the addition of damping, by a reduction of span length, by the addition of span tension, and by an increase in span stiffness; (c) the high vertical accelerations of the vehicles, which may approach 2 g’s at speeds of 300 mph, show the need for advanced suspension systems to insure passenger safety and comfort.

Copyright © 1971 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In