Stability Criteria for Distributed Nonlinear Sampled-Data Systems Defined by Green’s Functions

[+] Author and Article Information
G. Jumarie

Universite du Quebec a Montreal, Department of Mathematics, Montreal, Canada

J. Dyn. Sys., Meas., Control 96(3), 315-321 (Sep 01, 1974) (7 pages) doi:10.1115/1.3426808 History: Received April 08, 1974; Online July 13, 2010


Sampled-data, nonlinear, distributed systems, which exhibit a structure similar to that of the standard closed loop with lumped parameter, are investigated from the viewpoint of their input-output stability. These systems are governed by operational equations involving discrete Laplace-Green kernels. Their feedback gains are bounded by upper and lower values which depend explicitly on the time and the distributed parameter. The main result is: an input-output stability theorem is given which applies both in L∞ (O, ∞) and L2 (O, ∞). This criterion, which may be considered as being an extension of the ≪circle criterion≫, involves the mean square value on the bounds of the feedback gain. Stability conditions for continuous systems are derived from this result. In the special case of systems with distributed periodical time-varying feedback gains, a stability criterion is given which applies in Marcinkiewicz space M2 (O, ∞). This result which involves the mean square value of the feedback gain is generally less restrictive than the L2 (O, ∞) stability criterion mentioned above.

Copyright © 1974 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In