0
RESEARCH PAPERS: Additional Technical Papers

On Gyrobondgraphs and Their Uses

[+] Author and Article Information
R. C. Rosenberg

Michigan State University, East Lansing, Mich.

J. Dyn. Sys., Meas., Control 100(1), 76-82 (Mar 01, 1978) (7 pages) doi:10.1115/1.3426343 History: Received January 30, 1978; Online July 13, 2010

Abstract

Graphical representations of lumped-parameter models for physical and engineering systems have been in use for some time. A relatively recent arrival is the bond graph, which displays energy flow and energy structure explicitly. Bond graphs are finding increasing use in a variety of applications, including classical electromechanical, hydraulic, and thermal energy systems as well as chemical and biological processes. In addition, there has been some effort to extend the approach to energy-like macroeconomic systems. The standard bond graph approach uses the same basic elements commonly found in network theory, although the graphing scheme is different. This paper defines a specific type of bond graph—the gyrobondgraph—and shows how it serves as a canonical form for a large class of lumped-parameter multiport models. The gyrobondgraph is based on only five elements and a standard graph format. A transformation procedure is described for obtaining a gyrobondgraph from a standard bond graph. The formulation of system equations associated with a gyrobondgraph is discussed briefly, and, as a point of interest, Tellegen’s Theorem in quasi-power form is derived. The gyrobondgraph appears to be an important new tool for the exploration of multiport system theory; furthermore, it is a source of new techniques for the computer simulation of bond graph models.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In