0
RESEARCH PAPERS

Analysis and Design of a Direct-Drive Arm With a Five-Bar-Link Parallel Drive Mechanism

[+] Author and Article Information
Haruhiko Asada, Kamal Youcef-Toumi

Department of Mechanical Engineering, Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Mass. 02139

J. Dyn. Sys., Meas., Control 106(3), 225-230 (Sep 01, 1984) (6 pages) doi:10.1115/1.3149676 History: Received June 04, 1984; Online July 21, 2009

Abstract

The direct-drive arm that has no gears between motors and their loads have several important advantages including no backlash, small friction, and high mechanical stiffness. The arm mechanism, however, becomes extremely massive, when each motor is directly attached to its joint along a serial linkage mechanism. The complicated dynamics resulting from varying inertia, interactions, and nonlinearities, is also more prominent than that of a robot with gears. This paper describes a lightweight arm mechanism with invariant and decoupled inertia characteristics. Instead of having motors at serial joints, a parallel drive mechanism with a closed-loop five bar linkage is utilized. The dynamic behavior of this mechanism is analyzed and the condition for the elimination of the interactions and nonlinearities in the mass properties is derived. The decoupled and invariant arm dynamics significantly reduces the complexity of controlling the direct-drive arm. In the latter half of the paper, a prototype robot developed on this basis is described. By using high torque brushless motors which were specially designed for the direct-drive robot, top speed and maximum acceleration were increased by an order-of-magnitude to about 10 m/s and 5 G, respectively.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In