A Practical Approach to Nonlinear Estimation by Using the Maximum Entropy Principle

[+] Author and Article Information
Guy Jumarie

Department of Mathematics and Computer Science, Université du Québec à Montréal, Montreal, Quebec H3C 3P8 Canada

J. Dyn. Sys., Meas., Control 108(1), 49-55 (Mar 01, 1986) (7 pages) doi:10.1115/1.3143742 History: Received November 05, 1985; Online July 21, 2009


The problem of estimating the state of a continuous markovian process in the presence of nonlinear observation (nonlinear filtering) may be considered as being completely solved on a theoretical standpoint. All the difficulties arise in the practical applications which require new ways of investigation: search for special approaches related to special problems, and search for improvement of the numerical techniques which are now available. In fact, nonlinear filtering is basically an infinite dimensional problem, and any approximation should work in a finite dimensional space. The paper proposes an approach without using stochastic differential equations. The continuous markovian process is defined by its transition moments only and therefore one can derive the equation of state moments. When the transition moments are polynomials, the state moments are then given by an infinite set of linear differential equations. Likewise when the observation is polynomial, an infinite set of linear equations provides estimates of the state moments in terms of the observation moments. Given the estimates of the state moments, and using the maximum entropy principle we will obtain the corresponding probability density, and therefore the estimate of the state. When the nonlinear functions are not polynomials, it will be possible to apply the method above, using a polynomial approximation.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In