A New Approach to Adaptive Control of Manipulators

[+] Author and Article Information
H. Seraji

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif. 91109

J. Dyn. Sys., Meas., Control 109(3), 193-202 (Sep 01, 1987) (10 pages) doi:10.1115/1.3143844 History: Received February 01, 1986; Online July 21, 2009


The paper presents a new approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator “inverse” as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which “behaves” as the “inverse” of the manipulator at any operating point; and the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MR AC theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload. Simulation results are presented in support of the proposed adaptive control scheme. The results demonstrate that the adaptive controller performs remarkably well for different reference trajectories and despite gross variations in the payload.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In