0
RESEARCH PAPERS

Improved Gradient-Type Algorithms for Zero Terminal Gradient Optimal Control Problems

[+] Author and Article Information
Chung-Feng Kuo, Chen-Yuan Kuo

Mechanical and Aerospace Engineering Department, Arizona State University, Tempe, AZ 85287

J. Dyn. Sys., Meas., Control 109(4), 355-362 (Dec 01, 1987) (8 pages) doi:10.1115/1.3143867 History: Received September 01, 1986; Online July 21, 2009

Abstract

Difficulties often arise when we apply the gradient type algorithms employing penalty functions to optimal control problems with variable final time. There is another class of optimal control problems for which the necessary conditions for optimality require a zero gradient at the final time. This causes the gradient-type algorithms, in their standard forms, to become incapable of changing the terminal value of the control variable at each iteration and the rate of convergence is adversely affected. In this paper, we first apply a new transformation method developed by Polak [19] which transforms the variable final time problem into a fixed final time problem. Second, an improved gradient-type algorithm is developed to overcome the zero terminal gradient problem. It is shown that, by applying this transformation and improved algorithm to four examples, not only the variable final time and zero terminal gradient problems are solved and the control vector updated in the correct direction but the rate of convergence of the improved algorithm is faster than that of the traditional gradient-type algorithms.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In