Parametrically Excited Behavior of a Railway Wheelset

[+] Author and Article Information
J. Lieh, I. Haque

Clemson University, Clemson, SC 29631

J. Dyn. Sys., Meas., Control 110(1), 8-17 (Mar 01, 1988) (10 pages) doi:10.1115/1.3152656 History: Received May 19, 1987; Online July 21, 2009


The dynamic response of rail vehicles is affected by parameters such as wheel-rail geometry, track gage, and axle load. Variations in these parameters, as a rail vehicle moves down the track, can cause instabilities that are related to parametrically excited behavior. This paper reports on the use of Floquet Theory to predict the stability and instability regions for a single wheelset subjected to harmonic variations in wheel-rail geometry, track gage and axle load. Time studies showing the response of a wheelset to various initial conditions are also included. The results show that harmonic variations in the wheel-rail geometry can influence the behavior of a wheelset significantly. The system is especially susceptible to variations in conicity. Time history studies show that the response is dependent on initial conditions, the amount of variations and the magnitude of the excitation frequency.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In