0
RESEARCH PAPERS

An Investigation Into the Compliance of SCARA Robots. Part II: Experimental and Numerical Validation

[+] Author and Article Information
H. A. ElMaraghy, B. Johns

Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7

J. Dyn. Sys., Meas., Control 110(1), 23-30 (Mar 01, 1988) (8 pages) doi:10.1115/1.3152643 History: Received June 04, 1987; Online July 21, 2009

Abstract

A model of inherent elastic compliance was developed for general position-controlled SCARA, with conventional joint feedback control, for both rotational and prismatic part insertion (Part I). The developed model was applied to the SKILAM and ADEPT I robots for validation. Experimental procedures and numerical solution methods are described. It was found that the ADEPT I robot employs a coupled control strategy between joints one and two which produces a constant, decoupled end effector compliance. The applicable compliance matrix, in this case, is presented and the experimental results are discussed. The model may be used to develop compliance maps that define the amount of end effector compliance, as a function of the joints compliance, as well as its variation for different robot configurations. This is illustrated using data for the SKILAM SCARA robot. Results are plotted and discussed. The most appropriate robot postures for assembly were found for both rotational and prismatic parts. The conditions necessary to achieve compliance or semicompliance centers with the SKILAM robot were examined. The results and methods demonstrated in these examples may be used to select appropriate robots for given applications. They can also guide robot designers in selecting joint servo-control gains to obtain the desired joints compliance ratio and improve assembly performance.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In