0
RESEARCH PAPERS

Implementation of Adaptive Techniques for Motion Control of Robotic Manipulators

[+] Author and Article Information
M. Tomizuka, R. Horowitz, G. Anwar, Y. L. Jia

Department of Mechanical Engineering, University of California, Berkeley, CA 94720

J. Dyn. Sys., Meas., Control 110(1), 62-69 (Mar 01, 1988) (8 pages) doi:10.1115/1.3152649 History: Received August 31, 1987; Online July 21, 2009

Abstract

This paper is concerned with the digital implementation and experimental evaluation of two adaptive controllers for robotic manipulators. The first is a continuous time model reference adaptive controller, and the second is a discrete time adaptive controller. The primary purpose of these adaptive controllers is to compensate for inertial variations due to changes in configuration and payload, as well as disturbances, such as Coulomb friction and/or gravitational forces. Experimental results are obtained from a laboratory test stand, which emulates an one-axis direct drive robot arm with variable inertia, as well as a Toshiba TSR-500V industrial robot. Experimental results from the test stand indicate that these adaptive control schemes are promising for the control of direct drive robot arms. Friction forces arising from the harmonic gear of the Toshiba robot were detrimental if not properly compensated. Because of a high gearing ratio, the advantage of adaptive control for the Toshiba arm could be shown only by detuning the controller.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In