Modeling and Simulation of a Supercharger

[+] Author and Article Information
Raymond Merala, Mont Hubbard, Takashi Miyano

Mechanical Engineering Department, University of California, Davis, CA 95616

J. Dyn. Sys., Meas., Control 110(3), 316-323 (Sep 01, 1988) (8 pages) doi:10.1115/1.3152688 History: Received April 01, 1987; Online July 21, 2009


A dynamic model is developed for simulating and predicting performance for superchargers of relatively arbitrary geometric configuration. A thermodynamic control volume approach and bond graph models are used to derive continuity and energy equations linking the various control volumes. Bond graphs also serve to study and understand the causal implications of laws governing flows between control volumes and system dynamics. Heat transfer is neglected. Simulation outputs include time histories of pressure, temperature, mass, and energy associated with each control volume, time histories of the various flows in the supercharger, and overall volumetric efficiency. Volumetric efficiencies are predicted over a wide range of speed/pressure ratio combinations and are within three percent of experimentally measured values. The simulation is used to investigate the sensitivity of supercharger performance to several key design parameters, including rotor-rotor separation, and rotor-housing and side plate clearance distances.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In