Variational Modal Identification of Conservative Nongyroscopic Systems

[+] Author and Article Information
L. Silverberg, S. Kang

Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910

J. Dyn. Sys., Meas., Control 111(2), 160-171 (Jun 01, 1989) (12 pages) doi:10.1115/1.3153032 History: Received June 26, 1987; Online July 21, 2009


A new modal identification method for Conservative Nongyroscopic Systems is proposed. The modal identification method is formulated as a variational problem in which stationary values of a functional quotient are sought. The computation of the functional quotient is carried out using a set of admissible functions defined over the spatial domain of the system. Measurements of the free system response at discrete points are carried out using any combination of displacements, velocities, and/or accelerations. Three types of admissible functions have been considered—global functions, spatial Dirac-delta functions, and finite element interpolation functions. The variational modal identification method is applied to a pure bending vibration problem, to a pure longitudinal vibration problem, and to a combined bending and longitudinal vibration problem. The effectiveness of the variational modal identification method using different sets of admissible functions is examined.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In