0
RESEARCH PAPERS

Automated Robotic Deburring of Parts Using Compliance Control

[+] Author and Article Information
M. G. Her, H. Kazerooni

Mechanical Engineering Department, University of Minnesota, Minneapolis, MN 55455

J. Dyn. Sys., Meas., Control 113(1), 60-66 (Mar 01, 1991) (7 pages) doi:10.1115/1.2896360 History: Received April 01, 1988; Revised December 01, 1989; Online March 17, 2008

Abstract

This work presents a method for robotic deburring of two-dimensional planar parts with unknown geometry. Robotic deburring requires “compliancy” and “stiffness” in the robot in the directions tangent and normal to the part, respectively. Compliancy in the tangential direction allows robotic accommodation of tangential cutting forces, while stiffness in the normal direction impedes a robotic response to normal cutting forces. But, to track the part contour, the robot requires compliancy in the normal direction. These conflicting requirements are addressed in this article as two problems: control of the metal removal process and tracking of the part contour. In general, these two problems are coupled; however, here they are separated into a hardware problem and a control problem. A tracking mechanism has been designed and built which incorporates a roller bearing mounted on a force sensor at the robot endpoint. This force sensor is located directly below the cutter and measures the contact forces which are the input to the tracking controller. These contact forces are used not only to calculate the normal vector to the part surface, but also to generate compliancy in the robot. However, the deburring algorithm uses another set of forces (cutting forces generated by the cutter) to produce a stable metal removal process. This deburring control method guarantees compliancy and stiffness in the robot in response to the tangential and normal cutting forces, respectively. Experimental results are given to show the effectiveness of this method for deburring of two-dimensional parts with unknown geometry.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In