0
RESEARCH PAPERS

A Prototype Steering Weave Stabilizer for Automobiles

[+] Author and Article Information
J. C. Whitehead

JCW Engineering, Davis, CA 95616

J. Dyn. Sys., Meas., Control 113(1), 138-142 (Mar 01, 1991) (5 pages) doi:10.1115/1.2896340 History: Received May 08, 1989; Revised October 01, 1989; Online March 17, 2008

Abstract

A prototype high-speed steering stabilizer for automobiles applies transient steering torques so that the sum of natural steering restoring torque and the control torque is more nearly in phase with steer angle than the natural restoring torque alone. The resulting reduction in the phase lag from steer angle to restoring torque mitigates the steering weave mode. Since steering restoring torque is nearly proportional to vehicle lateral acceleration, weave controller circuitry could subtract instantaneous lateral acceleration from expected steady-state lateral acceleration calculated from steer angle and vehicle speed, and thence command a steering torque actuator depending on the difference signal. The prototype performs the same function using a concentrated mass on the lower steering wheel rim which is passively sensitive to both steer angle and lateral acceleration, thereby applying only transient steering torques in the desired manner at a vehicle speed of 30 m/s. The additional steering system inertia alone affects the weave mode, so a non-stabilizing configuration with the same mass distributed around the steering wheel rim is tested for direct comparison. The experimental data show a dramatic stabilization of weave for the configuration which applies control torque.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In