Transferring Manipulative Skills to Robots: Representation and Acquisition of Tool Manipulative Skills Using a Process Dynamics Model

[+] Author and Article Information
Sheng Liu, Haruhiko Asada

Center for Information-Driven Mechanical Systems, Massachusetts Institute of Technology, Cambridge, MA 02139

J. Dyn. Sys., Meas., Control 114(2), 220-228 (Jun 01, 1992) (9 pages) doi:10.1115/1.2896518 History: Received March 01, 1991; Revised July 01, 1991; Online March 17, 2008


A new method based on task process models for acquiring manipulative skills from human experts is presented. In performing manipulative tasks such as deburring, a human expert moves a tool at an optimal feedrate and cutting force as well as with an appropriate compliance for holding the tool. An experienced worker can select the correct strategy for performing a task and change it dynamically in accordance with the task process state. In this paper, the human expertise for selecting a task strategy that accords with the process characteristics is modeled as an associative mapping, and represented and generated by using a neural network. First, the control strategy for manipulating a tool is described in terms of feedforward inputs and tool holding dynamics. The parameters and variables representing the control strategy are then identified by using teaching data taken from demonstrations by an expert. The task process is also modeled and characterized by a set of parameters, which are identified by using this same teaching data. Combining the two sets of identified parameters, we can derive an associative mapping from the task process characteristics to the task strategy parameters. The consistency of the mapping and the transferability of human skills are analyzed by using Lipschitz’s condition. The method is applied to deburring, and implemented on a direct-drive robot. It is shown that the robot is able to associate a correct control strategy with process characteristics in a manner similar to that of the human expert.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In