0
RESEARCH PAPERS

Dynamic Analysis to Evaluate Viscoelastic Passive Damping Augmentation for the Space Shuttle Remote Manipulator System

[+] Author and Article Information
Thomas E. Alberts, Houchun Xia, Yung Chen

Department of Mechanical Engineering and Mechanics, Old Dominion University, Norfolk, VA 23529-0247

J. Dyn. Sys., Meas., Control 114(3), 468-475 (Sep 01, 1992) (8 pages) doi:10.1115/1.2897370 History: Received February 12, 1991; Revised November 01, 1991; Online March 17, 2008

Abstract

This paper presents a NASTRAN finite element analysis for evaluation of the effectiveness of viscoelastic damping treatments as passive controls for large flexible space manipulators. The passive damping could be used alone or as an augmentation to active control. Perhaps the best existing example of a practical flexible manipulator is the space shuttle Remote Manipulator System (RMS). The authors use the RMS as an example for this investigation, subjecting it to a detailed dynamic analysis which can be used to evaluate the critical modes for control and to distinguish the modes which are good candidates for active control from those which are well suited for passive control. Modal potential energy analysis (MPE) is used to examine the modal energy distribution in each structural member of the complex flexible chained system. The results indicate that the most dominant contributors to end-point oscillations fall into two categories. These include very low frequency modes due to joint flexibility and higher frequency modes due to bending in the booms. Significant end-point motions result from each category, but the most significant motions are associated with joint flexibility. Finally, a finite element analysis is performed to evaluate the effectiveness of constrained viscoelastic layer damping treatments for passive vibration control. Passive damping augmentation is introduced through the use of a constrained viscoelastic layer damping treatment applied to the surface of the manipulator’s flexible booms. It is shown that even the joint compliance dominated modes can be damped to some degree through appropriate design of the treatment.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In