LQR for State-Bounded Structural Control

[+] Author and Article Information
C.-H. Chuang, D.-N. Wu

School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Q. Wang

Department of Aerospace Engineering, University of Texas at Austin, Austin, TX 78712

J. Dyn. Sys., Meas., Control 118(1), 113-119 (Mar 01, 1996) (7 pages) doi:10.1115/1.2801130 History: Received July 28, 1993; Online December 03, 2007


In order to prevent structural damages, it is more important to bound the vibration amplitude than to reduce the vibration energy. However, in the performance index for linear quadratic regulator (LQR), the instantaneous amplitude of vibration is not minimized. An ordinary LQR may have an unacceptable amplitude at some time instant but still have a good performance. In this paper, we have developed an LQR with adjustable gains to guarantee bounds on the vibration amplitude. For scalar systems, the weighting for control is switched between two values which give a low-gain control when the amplitude is inside the bound and a high-gain control when the amplitude is going to violate the given bound. For multivariable systems, by assuming a matching condition, a similar controller structure has been obtained. This controller is favored for application since the main structure of a common LQR is not changed; the additional high-gain control is required only if the vibration amplitude fails to stay inside the bound. We have applied this controller to a five-story building with active tendon controllers. The results show that the largest oscillation at the first story stays within a given bound when the building is subject to earthquake excitation.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In