Dynamics of Multibody Tracked Vehicles Using Experimentally Identified Modal Parameters

[+] Author and Article Information
Toshikazu Nakanishi, Xuegang Yin, A. A. Shabana

Department of Mechanical Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607-7022

J. Dyn. Sys., Meas., Control 118(3), 499-507 (Sep 01, 1996) (9 pages) doi:10.1115/1.2801173 History: Received September 11, 1993; Online December 03, 2007


The mode shapes, frequencies, and modal mass and stiffness coefficients of multibody systems such as tracked vehicles can be determined using experimental identification techniques. In multibody simulations, however, knowledge of the modal parameters of the individual components is required, and consequently, a procedure for extracting the component modes from the mode shapes of the assembled system must be used if experimental modal analysis techniques are to be used with general purpose multibody computer codes. In this investigation, modal parameters (modal mass, modal stiffness, modal damping, and mode shapes), which are determined experimentally, are employed to simulate the nonlinear dynamic behavior of a multibody tracked vehicle which consists of interconnected rigid and flexible components. The equations of motion of the vehicle are formulated in terms of a set of modal and reference generalized coordinates, and the theoretical basis for extracting the component modal parameters of the chassis from the modal parameters of the assembled vehicle is described. In this investigation, the track of the vehicle is modeled as a closed kinematic chain that consists of rigid links connected by revolute joints, and the effect of the chassis flexibility on the motion singularities of the track is examined numerically. These singularities which are encountered as the result of the change in the track configuration are avoided by using a deformable secondary joint instead of using the loop-closure equations.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In