Sliding Mode Control With Sliding Perturbation Observer

[+] Author and Article Information
Jairo Terra Moura, Hakan Elmali, Nejat Olgac

Department of Mechanical Engineering U-139, University of Connecticut, Storrs, CT 06269

J. Dyn. Sys., Meas., Control 119(4), 657-665 (Dec 01, 1997) (9 pages) doi:10.1115/1.2802375 History: Received June 01, 1996; Online December 03, 2007


This work introduces a new robust motion control algorithm using partial state feedback for a class of nonlinear systems in the presence of modelling uncertainties and external disturbances. The effects of these uncertainties are combined into a single quantity called perturbation. The major contribution of this work comes as the development and design of a robust observer for the state and the perturbation which is integrated into a Variable Structure Controller (VSC) structure. The proposed observer combines the procedures of Sliding Observers (Slotine et al, 1987) with the idea of Perturbation Estimation (Elmali and Olgac, 1992). The result is what is called Sliding Perturbation Observer (SPO). The VSC follows the philosophy of Sliding Mode Control (SMC) (Slotine and Sastry, 1983). This combination of controller/observer gives rise to the new routine called Sliding Mode Control with Sliding Perturbation Observer (SMCSPO). The stability analysis shows how the algorithm parameters are scheduled in order to assure the sliding modes of both controller and observer. A simplified form of the general design procedure is also presented in order to ease the practical applications of SMCSPO. Simulations are presented for a two-link manipulator to verify the proposed approach. Experimental validation of the methodology is also performed on a PUMA 560 robot. A superior control performance is obtained over some full state feedback techniques such as SMC and Computed Torque Method.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In