Dynamics and Nonlinear Coordination Control of Multifingered Mechanical Hands

[+] Author and Article Information
A. DasGupta, H. Hatwal

Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, 208 016, India

J. Dyn. Sys., Meas., Control 120(2), 275-281 (Jun 01, 1998) (7 pages) doi:10.1115/1.2802419 History: Received January 15, 1996; Online December 03, 2007


This paper presents a study of the dynamics and nonlinear coordination control of multifingered mechanical hands. Considering the dynamics of the object and the fingers, the equations of motion are derived in the finger joint space resulting in a set of differential equations with some algebraic constraints. Using dynamic extension, the equations are converted to the state space form, which results in a nonlinear system affine in control. For the purpose of control, certain output equations are defined. Using the tools of differential geometric control theory, some important properties of the system are shown. Using these properties, a nonlinear input-output linearizing controller is synthesized which yields a decoupled linear system. The poles of the resulting linearized system are then placed appropriately to render desirable features to the system. The theory is validated with an example of a three-fingered spatial hand manipulating a cuboidal object.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In