0
TECHNICAL PAPERS

Theory and Applications of the Robust Cross-Coupled Control Design

[+] Author and Article Information
Syh-Shiuh Yeh, Pau-Lo Hsu

Department of Electrical and Control Engineering, National Chiao Tung University, Hsinchu, 300 Taiwan

J. Dyn. Sys., Meas., Control 121(3), 524-530 (Sep 01, 1999) (7 pages) doi:10.1115/1.2802506 History: Received October 07, 1996; Online December 03, 2007

Abstract

The cross-coupled control (CCC) has been recognized as an efficient motion controller that reduces contouring errors, but theoretical analysis of it is lacking, and there is no systematic design approach for obtaining a CCC system with guaranteed control performance. Consequently, the compensators C in CCC are commonly implemented in a PID structure and their contouring accuracy is usually degraded in real applications under different operating conditions. In an attempt to overcome the CCC design limitations described above, this paper introduces a robust CCC design based on a novel formulation: the contouring error transfer function (CETF), leading to an equivalent formulation as in the feedback control design problem. Then, methods in robust control design can be readily employed to achieve robust CCC with specified stability margins and guaranteed contouring performance. Furthermore, the proposed design has been verified as being internally stable. All provided experimental results indicate that the proposed robust CCC design consistently renders satisfactory contouring accuracy under different operating conditions.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In