Modeling of Mechanical Systems Using Rigid Bodies and Transmission Line Joints

[+] Author and Article Information
Petter Krus

Division of Fluid Power Technology, Department of Mechanical Engineering, Linköping University, S-58183 Linköping, Sweden

J. Dyn. Sys., Meas., Control 121(4), 606-611 (Dec 01, 1999) (6 pages) doi:10.1115/1.2802523 History: Received August 14, 1996; Online December 03, 2007


Dynamic simulation of systems, where the differential equations of the system are solved numerically, is a very important tool for analysis of the detailed behavior of a system. The main problem when dealing with large complex systems is that most simulation packages rely on centralized integration algorithms. For large scale systems, however, it is an advantage if the system can be partitioned in such a way that the parts can be evaluated with only a minimum of interaction. Using transmission line models, with distributed parameters, physically motivated pure time delays are introduced in the communication between components. These models can be used to represent both lines in a hydraulic system and springs in mechanical systems. As a result, components and subsystems can be simulated more independently of each other. In this paper it is shown how flexible joints based on transmission line modeling (TLM) with distributed parameters can be used to simplify modeling of large mechanical link systems interconnected with other physical domains. Furthermore, it provides a straightforward formulation for parallel processing.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In