Disturbance Rejection With Simultaneous Input-Output Linearization and Decoupling Via Restricted State Feedback

[+] Author and Article Information
A. S. Tsirikos

National Technical University of Athens, Department of Electrical and Computer Engineering, Division of Computer Science, Zographou 15773, Athens, Greecee-mail: tsirikos@control.ntua.gr

K. G. Arvanitis

Aristotle University of Thessaloniki, School of Agriculture, Department of Hydraulics, Soil Science and Agricultural Engineering, P.O. Box 275, 54006, Thessaloniki, Greecee-mail: karvan@agro.auth.gr

J. Dyn. Sys., Meas., Control 122(1), 49-62 (Mar 05, 1997) (14 pages) doi:10.1115/1.482428 History: Received March 05, 1997
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Falb,  P. L., and Wolovich,  W. A., 1967, “Decoupling in the Design and Synthesis of Multivariable Control Systems,” IEEE Trans. Autom. Control, AC-12, pp. 651–669.
Porter,  W. A., 1969, “Decoupling of and Inverses for Time-Varying Linear Systems,” IEEE Trans. Autom. Control, AC-14, pp. 378–380.
Porter,  W. A., 1970, “Diagonalization and Inverses for Nonlinear Systems,” Int. J. Control, 10, pp. 252–264.
Ha,  I. J., and Gilbert,  E. G., 1986, “A Complete Characterization of Decoupling Control Laws for a General Class of Nonlinear Systems,” IEEE Trans. Autom. Control, AC-31, pp. 823–830.
Xia,  X., 1993, “Parametrization of Decoupling Control Laws for Affine Nonlinear Systems,” IEEE Trans. Autom. Control, AC-38, pp. 916–928.
Isidori, A., 1996, Nonlinear Control Systems: An Introduction, 3rd Ed., Springer-Verlag, Berlin.
Tsirikos, A. S., 1996, “Contribution to the Development of New Techniques for the Analysis and Design of Linear and Nonlinear Systems,” Ph.D. thesis, National Technical University of Athens, Department of Electrical and Computer Engineering, Athens.
Morgan,  B. S., 1964, “The Synthesis of Linear Multivariable Systems by State-Variable Feedback,” IEEE Trans. Autom. Control, AC-9, pp. 405–411.
Suda, N., and Umahashi, K., 1984, “Decoupling of Nonsquare Systems: A Necessary and Sufficient Condition in Terms of Infinite Zeros,” Proc. 9th IFAC World Congress, Budapest, 1 , pp. 88–93.
Descusse, J., Lafay, J. F., and Malabre, M., 1986, “A Survey on Morgan’s Problem,” Proc. 25th IEEE Conf. Decision Contr. (CDC), 2 , pp. 1289–1294, Athens, Greece.
Descusse,  J., Lafay,  J. F., and Malabre,  M., 1988, “Solution to Morgan’s Problem,” IEEE Trans. Autom. Control, AC-33, pp. 732–739.
Commault,  C., Descusse,  J., Dion,  J. M., Lafay,  J. F., and Malabre,  M., 1986, “New decoupling invariants: The essential orders,” Int. J. Control, 44, pp. 689–700.
Herrera,  H. A. N., and Lafay,  J. F., 1993, “New Results about Morgan’s Problem,” IEEE Trans. Autom. Control, AC-38, pp. 1834–1838.
Glumineau,  A., and Moog,  C. H., 1992, “Nonlinear Morgan’s Problem: Case of (p+1) Inputs and p Outputs,” IEEE Trans. Autom. Control, AC-37, pp. 1067–1072.
Kamiyama,  S., and Furuta,  K., 1976, “Decoupling by Restricted State Feedback,” IEEE Trans. Autom. Control, AC-21, pp. 413–415.
Descusse,  J., Lafay,  J. F., and Kucera,  V., 1984, “Decoupling by Restricted State Feedback: The General Case,” IEEE Trans. Autom. Control, AC-29, pp. 79–81.
Arvanitis,  K. G., 1997, “Simultaneous Uniform Disturbance Localization and Decoupling of Nonsquare Linear Time-Dependent Analytic Systems via Restricted State Feedback,” IMA J. Math. Control Inf., 14, pp. 371–383.
Arvanitis,  K. G., 1998, “Uniform Decoupling of Nonsquare Linear Time-Varying Analytic Systems via Restricted Static State Feedback,” J. Franklin Inst., 335B, pp. 359–373.
Tarn, T. J., and Zhan, W., 1991, “Input-Output Decoupling and Linearization via restricted Static State Feedback,” Proc. 11th IFAC World Congress, Tallin, Estonia, 3 , pp. 287–292.
Wonham, W. M., 1979, Linear Multivariable Control: A Geometric Approach, Springer-Verlag, New York.
Isidori,  A., Krener,  A. J., Gori-Giorgi,  C., and Monaco,  S., 1981, “Nonlinear Decoupling via Feedback: A Differential Geometric Approach,” IEEE Trans. Autom. Control, AC-26, pp. 331–345.
Hirschorn,  R. M., 1981, “(A, B)-Invariant Distributions and Disturbance Decoupling of Nonlinear Systems,” SIAM J. Control Optim., 19, pp. 1–19.
Nijmeijer,  H., and Van der Schaft,  A., 1983, “The Disturbance Decoupling Problem for Nonlinear Control Systems,” IEEE Trans. Autom. Control, AC-28, pp. 331–345.
Krener,  A. J., 1985, “(Adf, g), (adf, g) and Locally (adf, g) Invariant and Controllability Distributions,” SIAM J. Control Optim., 23, pp. 523–549.
Huijberts,  H., 1992, “A Nonregular Solution to the Nonlinear Dynamic Disturbance Decoupling Problem with an Application to a Complete Solution of the Nonlinear Model Matching Problem,” SIAM J. Control Optim., 30, pp. 350–366.
Arvanitis,  K. G., 1994, “Uniform Disturbance Localization with Simultaneous Uniform Decoupling for Linear Time-Varying Analytic Systems,” Int. J. Syst. Sci., 25, pp. 1679–1694.
Narikiyo,  V., and Izumi,  T., 1991, “On model feedback control for robot manipulators,” ASME J. Dyn. Syst., Meas., Control, 113, pp. 371–378.
Wie,  B., Byun,  K. W., and Warren,  V. W., 1989, “New approach to attitude/momentum control for the space station,” AIAA J. Guidance, Contr. Dyn., 12, pp. 714–722.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In