Complex Dynamics in a Harmonically Excited Lennard-Jones Oscillator: Microcantilever-Sample Interaction in Scanning Probe Microscopes

[+] Author and Article Information
M. Basso

Dipartimento di Sistemi e Informatica, Università di Firenze, Via di S. Marta 3, 50139 Firenze, Italybasso@dsi.unifi.it

L. Giarré

Dipartimento di Ingegneria Automatica e Informatica, Università di Palermo, Viale delle Scienze, 90128-Palermo, Italygiarre@ias.unipa.it

M. Dahleh, I. Mezić

Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106mezic@engineering.ucsb.edu

J. Dyn. Sys., Meas., Control 122(1), 240-245 (Jan 30, 1998) (6 pages) doi:10.1115/1.482465 History: Received January 30, 1998
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Burnham,  N. A., Kulik,  A., Gremaud,  G., and Briggs,  G., 1995, “Nanosubarmonics: The Dynamics of Small Nonlinear Contacts,” Phys. Rev., 74, pp. 5092–5095.
Ashhab, M., Salapaka, M., Dahleh, M., and Mezić, I., 1997, “Control of Chaos in Atomic Force Microscopes,” ACC, Albuquerque, NM.
Ashhab,  M., Salapaka,  M. V., Dahleh,  M., and Mezic,  I., “Melnikov-based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy,” J. Nonlinear Dynam., 20, pp. 197–220.
Israelachvili, J. N., 1985, Intermolecular and Surface Forces, Academic Press, New York.
Wiggins, S., 1990, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York.
Nayfeh, A., and Balachandran, B., 1995, Applied Nonlinear Dynamics, Wiley, New York.
Osedelec,  V. I., “A Multiplicative Ergodic Theorem: Lyapunov Characteristic Numbers for Dynamical System,” Trans. Mosc. Math. Soc., 19, p. 197.
Parker, T. S., and Chua, L. O., 1989, Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, New York.
Ott, E., 1993, Chaos in Dynamical Systems, Cambridge University Press, New York.
Ruelle, D., 1987, Chaotic Evolution and Strange Attractors, Cambridge University Press, New York.
Doedel,  E. J., Keller,  H. B., and Kernevez,  J. P., 1991, “Numerical Analysis and Control of Bifurcation Problems I: Bifurcations in Finite Dimension,” Int. J. Bifurcation Chaos Appl. Sci. Eng., 1, pp. 493–520.
Ashhab,  M., Salapaka,  M. V., Dahleh,  M., and Mezic,  I., “Dynamical Analysis and Control of Microcantilevers,” Automatica, 35, pp. 1663–1670.


Grahic Jump Location
A schematic of the atomic force microscope
Grahic Jump Location
Phase portrait for the unperturbed system
Grahic Jump Location
Trajectories in the phase plane: (a) Γ=10; (b) Γ=11; (c) Γ=16.2; (d) Γ=20
Grahic Jump Location
Bifurcation diagram of the AFM model
Grahic Jump Location
Sensitive dependence on initial conditions: position error for i.c. differing by 0.1%
Grahic Jump Location
Power spectral densities of the tip position ξ1; (a) Γ=10; (b) Γ=11; (c) Γ=16.2; (d) Γ=20. To compute the spectra, an FFT algorithm has been used on a window of 4096 data points collected at a sampling rate of 50 rad/s.
Grahic Jump Location
Poincaré map of the AFM model (10,000 points), Γ=20,θ̃=0
Grahic Jump Location
Period doubling bifurcation curve in the (Γ, α) plane: the region of chaotic attractors lies in a subset of the right side of the curve. The dashed line separates the region of validity for the Melnikov theory.
Grahic Jump Location
Poincaré map of the AFM model (10,000 points), Γ=20,α=0.8,θ̃=0



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In