0
TECHNICAL PAPERS

Hybrid Particle-Element Bond Graphs for Impact Dynamics Simulation

[+] Author and Article Information
E. P. Fahrenthold, J. C. Koo

Department of Mechanical Engineering, University of Texas, Austin, TX 78712

J. Dyn. Sys., Meas., Control 122(2), 306-313 (Aug 10, 1995) (8 pages) doi:10.1115/1.482456 History: Received August 10, 1995
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hallquist, J. O., 1983, Theoretical Manual for DYNA3D, Lawrence Livermore National Laboratory, Livermore, CA.
Fahrenthold,  E. P., and Wargo,  J. D., 1994, “Lagrangian Bond Graphs for Solid Continuum Dynamics Modeling,” ASME J. Dyn. Syst., Meas., Control, 116, No. 2, pp. 178–192.
Peyret, R., and Taylor, T. D., 1983, Computational Methods for Fluid Flow, Springer-Verlag, NY.
Wendt, J. F., ed., 1992, Computational Fluid Dynamics, Springer-Verlag, NY.
Carey, G. F, and Oden, J. T., 1986, Finite Elements: Fluid Mechanics, Prentice-Hall, Inc., Englewood Cliffs, NJ.
Fahrenthold,  E. P., and Venkataraman,  M., 1996, “Eulerian Bond Graphs for Fluid Continuum Dynamics Modeling,” ASME J. Dyn. Syst., Meas., Control, 118, No. 1, pp. 48–57.
Monaghan,  J. J., 1985, “Particle Methods for Hydrodynamics,” Comput. Phys. Rep., 3, pp. 71–124.
Monaghan, J. J., Thompson, M. C., and Hourigan, K., 1994, “Simulation of Free Surface Flows With SPH,” Advances in Computational Methods in Fluid Dynamics, ASME FED 196 , pp. 375–380.
Anderson, C. E., Jr., ed., 1986, “Hypervelocity Impact: Proceedings of the 1986 Symposium,” International Journal of Impact Engineering, 5 , No. 1–4.
Hertel, E. S., 1993, Comparison of Analytic Whipple Bumper Shield Ballistic Limits with CTH Simulations, SAND92-0347, Sandia National Laboratories, Albuquerque, NM.
Fahrenthold,  E. P., 1993, “A Lagrangian Model for Debris Cloud Dynamics Simulation,” Int. J. Impact Eng., 14, pp. 229–240.
Hockney, R. W., and Eastwood, J. W., 1981, Computer Simulation Using Particles, McGraw-Hill, NY.
Swegle,  J. W., Hicks,  D. L., and Attaway,  S. W., 1995, “Smooth Particle Hydrodynamics Stability Analysis,” J. Comput. Phys., 116, pp. 123–134.
Fritts, M. J., Crowley, W. P., and Trease, H. E., eds., 1985, The Free-Lagrange Method, Springer-Verlag, NY.
Trease, H. E., Fritts, M. J., and Crowley, W. P., eds., 1990, Advances in the Free-Lagrange Method, Springer-Verlag, NY.
Benz,  W., Slattery,  W. L., and Cameron,  A. G. W., 1986, “The Origin of the Moon and the Single-Impact Hypothesis,” Icarus, 66, pp. 515–535.
Stellingwerf,  R. F., and Wingate,  C. A., 1993, “Impact Modeling with Smooth Particle Hydrodynamics,” Int. J. Impact Eng., 14, pp. 707–718.
McGlaun,  J. M., Thompson,  S. L., and Elrick,  M. G., 1990, “CTH: A Three Dimensional Shock Wave Physics Code,” Int. J. Impact Eng., 10, pp. 351–360.
Goudreau,  G. L., and Hallquist,  J. O., 1982, “Recent Developments in Large-Scale Finite Element Hydrocode Technology,” Comput. Methods Appl. Mech. Eng., 33, pp. 725–757.
Libersky,  L. D., Petschenk,  A. G., Carney,  T. C., Hipp,  J. R., and Allahdadi,  F. A., 1993, “High Strain Lagrangian Hydrodynamics,” J. Comput. Phys., 109, pp. 67–75.
Libersky, L. D., and Randles, P. W., 1999, Oral Presentation at the 5th U.S. National Congress on Computational Mechanics, Boulder, Colorado, Aug. 4–6.
Libersky,  L. D., Randles,  P. W., Carney,  T. C., and Dickinson,  D. L., 1997, “Recent Improvements in SPH Modeling of Hypervelocity Impact,” Int. J. Impact Eng., 20, pp. 525–532.
Libersky, L. D., and Randles, P. W., 1999, “The Stress Point Technique as a Meshless Method,” Book of Abstracts for the 5th U.S. National Congress on Computational Mechanics, Boulder, Colorado, Aug. 4–6.
Monaghan,  J. J., 1992, “Smoothed Particle Hydrodynamics,” Annu. Rev. Astron. Astrophys., 30, pp. 543–574.
Fahrenthold,  E. P., and Horban,  B. A., 1999, “A Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation,” Int. J. Impact Eng., 23, pp. 237–248.
Fahrenthold,  E. P., and Koo,  J. C., 1997, “Hamiltonian Particle Hydrodynamics,” Comput. Methods Appl. Mech. Eng., 146, pp. 43–52.
Karnopp, D. C., Margolis, D. L., and Rosenberg, R. C., 1990, System Dynamics: A United Approach, Wiley, NY.
Goodbody, A. M., 1982, Cartesian Tensors, John Wiley, NY.
Breedveld,  P. C., 1982, “Proposition for an Unambiguous Vector Bond Graph Notation,” ASME J. Dyn. Syst., Meas., Control, 104, pp. 267–270.
Becker, E. B., Carey, G. F., and Oden, J. T., 1981, Finite Elements: An Introduction, Prentice-Hall, Englewood Cliffs, NJ.
Malvern, L. E., 1969, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Englewood Cliffs, NJ.
Noh,  W. F., 1978, “Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux,” J. Comput. Phys., 72, pp. 78–120.
Monaghan,  J. J., and Gingold,  R. A., 1983, “Shock Simulation by the Particle Method SPH,” J. Comput. Phys., 52, pp. 374–389.
Gear, C. W., 1971, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ.
Cole, R. H., 1948, Underwater Explosions, Dover Publications, NY.
Lu,  Y. Y., Belytschko,  T., and Tabbara,  M., 1995, “Element-free Galerkin Method for Wave Propagation and Dynamic Fracture,” Comput. Methods Appl. Mech. Eng., 126, pp. 131–153.
Kolsky, H., 1963, Stress Waves in Solids, Dover Publications, NY.
Gingold,  R. A., and Monaghan,  J. J., 1982, “Kernel Estimates as a Basis for General Particle Methods in Hydrodynamics,” J. Comput. Phys., 46, pp. 429–453.
Monaghan,  J. J., 1988, “An Introduction to SPH,” Comput. Phys. Commun., 48, pp. 89–96.
Grady,  D. E., and Passman,  S. L., 1990, “Stability and Fragmentation of Ejecta in Hypervelocity Impact,” Int. J. Impact Eng., 10, pp. 197–212.

Figures

Grahic Jump Location
Kinetic energy multiport
Grahic Jump Location
Internal energy multiport
Grahic Jump Location
Resistor multiport for viscous dissipation
Grahic Jump Location
Resistor multiport for heat conduction
Grahic Jump Location
System level bond graph model
Grahic Jump Location
(a) Wall shock example problem: exact and numerical solutions for the velocity distribution at t=0.4 μs. (b) Wall shock example problem: exact and numerical solutions for the pressure distribution at t=0.4 μs. (c) Wall shock example problem: exact and numerical solutions for the temperature distribution at t=0.4 μs. (d) Wall shock example problem: exact and numerical solutions for the density distribution at t=0.4 μs. (e) Wall shock example problem: exact and numerical solutions for the entropy distribution at t=0.4 μs.
Grahic Jump Location
(a) Bar impact example problem: geometry, loading, and discretization scheme. (b) Bar impact example problem: exact and numerical solutions for the bar midpoint velocity versus time.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In