0
TECHNICAL BRIEFS

Receding Time Horizon Linear Quadratic Optimal Control for Multi-Axis Contour Tracking Motion Control

[+] Author and Article Information
Robert J. McNab

Western Digital Cooperation, San Jose, CA 95138

Tsu-Chin Tsao

Mechanical and Aerospace Engineering Department, University of California-Los Angeles, Los Angeles, CA 90095-1597

J. Dyn. Sys., Meas., Control 122(2), 375-381 (Dec 15, 1998) (7 pages) doi:10.1115/1.482476 History: Received December 15, 1998
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Poo,  N., and Bollinger,  J. G., 1972, “Dynamic Errors in Type 1 Contouring Systems,” IEEE Trans. Ind. Appl., IA-8, No. 4, pp. 477–484, July.
Koren,  Y., 1980, “Cross-Coupled Biaxial Computer Control for Manufacturing Systems,” ASME J. Dyn. Syst., Meas., Control, 102, pp. 265–272.
Kulkarni,  P. K., and Srinivasan,  K., 1989, “Optimal Contouring Control of Multi-Axial Feed Drive Servomechanisms,” ASME J. Eng. Ind., 111, pp. 140–148.
Srinivasan,  K., and Kulkarni,  P. K., 1990, “Cross-Coupled Control of Biaxial Feed Drive Servomechanisms,” ASME J. Dyn. Syst., Meas., Control, 112, pp. 225–232.
Koren,  Y., and Lo,  C. C., 1991, “Variable-Gain Cross-Coupling Controller for Contouring,” Ann. CIRP, 40, pp. 371–374.
Chiu, G. T-C., and Tomizuka, M., 1995, “Contouring Control of Machine Tool Feed Drive Systems: a Task Coordinate Frame Approach,” Dynamic System and Control, the Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, DSC-Vol. 57-2, pp. 503–510.
Chiu,  T-C., and Tomizuka,  M., 1998, “Coordinated Position Control of Multi-Axis Mechanical Systems,” ASME J. Dyn. Syst., Meas., Control, 110, pp. 389–393.
Yen, J,-Y., Ho, H.-C., and Lu, S.-S., 1998, “Decoupled Path-Following ontrol Algorithm Based Upon the Decomposed Trajectory Error,” Proceedings of the 37th IEEE—Conference on Decision and Control, pp. 3189–3194, Tampa, FL.
Lo,  C.-C., and Chung,  C.-Y., 1999, “Tangential-Contouring Controller for Biaxial Motion Control,” ASME J. Dyn. Syst., Meas., Control, 121, pp. 126–129.
Tomizuka,  M., and Whitney,  D. E., 1975, “Optimal Discrete Finite Preview Problems (Why and How Is Future Information Important?),” ASME J. Dyn. Syst., Meas., Control, 97, pp. 319–325.
Tomizuka,  M., and Rothenthal,  D. E., 1979, “On the Optimal Digital State Vector Feedback Controller with Integral And Preview Actions,” ASME J. Dyn. Syst., Meas., Control, 101, No. 2, pp. 172–178.
Tomizuka,  M., Dornfeld,  D., Bian,  X.-Q., and Cai,  H.-C., 1980, “Application of Microcomputers to Automated Weld Quality Control,” ASME J. Dyn. Syst., Meas., Control, 102, No. 2, pp. 62–68.
Tsao,  T.-C., 1994, “Optimal Feed-Forward Digital Tracking Controller Design,” ASME J. Dyn. Syst., Meas., Control, 116, pp. 583–592.
McNab, R. J., and Tsao, T.-C., 1994, “Multi-Axis Contour Tracking: A Receding Horizon Linear Quadratic Optimal Control Approach,” ASME International Mechanical Engineering Congress and Exposition, Chicago, IL, DSC-Vol. 55-2, pp. 895–902.
Anderson, B. D. O., and Moore, J. B., 1971, Linear Optimal Control, Prentice-Hall, Englewood Cliffs, NJ.
Bitmead, R. R., Gevers, M., and Wertz, V., 1990, Adaptive Optimal Control: The Thinking Man’s GPC, Prentice-Hall, Englewood Cliffs, NJ.
Poubelle,  M. A., Petersen,  I. R., Gevers,  M., and Bitmead,  R. R., 1986, “A Miscellany of Results on an Equation of Count J. F. Riccati,” IEEE Trans. Autom. Control., AC-31, pp. 651–654.
Poubelle,  M. A., Bitmead,  R. R., and Gevers,  M., 1988, “Fake Algebraic Riccati Techniques and Stability,” IEEE Trans. Autom. Control., AC-33, pp. 379–381.
Bitmead,  R. R., Gevers,  M., Petersen,  I. R., and Kaye,  R. J., 1985, “Monotonicity and Stabilizability Properties of Solutions of the Riccati Difference Equation: Propositions, Lemmas, Theorems, Fallacious Conjectures and Counterexamples,” Syst. Control Lett., 5, pp. 309–315.
de Souza, C. E., 1989, “Monotonicity and Stabilizability Results for the Solution of the Riccati Difference Equation,” Proc. Workshop on the Riccati Equation in Control, Systems and Signals, S. Bittanti, ed., Como, Italy, pp. 38–41.

Figures

Grahic Jump Location
RMS tracking error versus preview length, α=4,β=0 (simulated, +, and experimental, ×)
Grahic Jump Location
Mean contour error squared versus preview length, α=0.25,β=15 (simulated, +, and experimental, ×)
Grahic Jump Location
Definition of tracking error and contour error
Grahic Jump Location
Points along a circular contour, path is toward lower left
Grahic Jump Location
Experimental RMS tracking error Hs(QNp)
Grahic Jump Location
Simulated RMS tracking error Hs(QNp)
Grahic Jump Location
Experimental RMS contour error Hs(QNp)
Grahic Jump Location
Simulated RMS contour error Hs(QNp)
Grahic Jump Location
Experimental RMS tracking error for Hs(Qmax)
Grahic Jump Location
Experimental RMS contour error for Hs(Qmax)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In