0
TECHNICAL PAPERS

Design of Robust High-Speed Motion Controller for a Plant With Actuator Saturation

[+] Author and Article Information
Hyun-Taek Choi

School of Electrical Engineering and Computer Science, Hanyang University, 1271, Sa 1-Dong, Ansan, 425-791, Koreae-mail: finding@kt.co.kr

Bong Keun Kim

Department of Mechanical Engineering, Pohang University of Science & Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang, 790-784, Koreae-mail: kbk@postech.ac.kr

Il Hong Suh

School of Electrical Engineering and Computer Science, Hanyang University, 1271, Sa 1-Dong, Ansan, 425-791, Koreae-mail: ihsuh@email.hanyang.ac.kr

Wan Kyun Chung

Department of Mechanical Engineering, Pohang University of Science & Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang, 790-784, Koreae-mail: wkchung@postech.ac.kr

J. Dyn. Sys., Meas., Control 122(3), 535-541 (Aug 25, 1998) (7 pages) doi:10.1115/1.1286520 History: Received August 25, 1998
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ohnishi,  K., 1987, “A new servo method in mechatronics,” Trans. Jpn. Soc. Mech. Eng., 107-D, pp. 83–86.
Lee, H. S., 1994, Robust Digital Tracking Controllers for High-Speed/High-Accuracy Positioning Systems, Ph.D. thesis, U.C. Berkeley.
Tesfaye, A., Lee, H. S., and Tomizuka, M., 1994, “Robust digital control design for high performance motion control systems.” Proc. 1994 ASME Winter Annual Meeting, pp. 903–908.
Goh, H. T., Weerasooriya, S., Low, T. S., and Huang, Y. H., 1995, “Modeling and compensation of pivot friction in a disk drive actuator,” Proc. 1995 American Control Conf., pp. 4141–4145.
Kempf, C. J., and Kobayashi, S., 1996, “Design of a discrete time tracking controller for a high speed, high accuracy positioning system,” Proc. 1996 Int. Conf. on Motion and Vibration Control, pp. 358–363.
Eom, K. S., Suh, I. H., and Chung, W. K., 1997, “Disturbance observer based path tracking control of robot manipulator considering torque saturation,” Proc. 1997 Int. Conf. on Advanced Robotics, pp. 651–657.
Kim, B. K., Chung, W. K., Choi, H.-T., and Suh, I. H., 1998, “Self adjusting saturation time optimal controller using disturbance observer,” Proc. 1998 World Automation Congress, pp. 731–736.
Iwasaki,  M., Shibata,  T., and Matsui,  N., 1999, “Disturbance-observer-based nonlinear friction compensation in table drive system,” IEEE/ASME Trans. Mechatron., 4, No. 1, pp. 3–8.
Yao,  B., Al-Majed,  M., and Tomizuka,  M., 1997, “High performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments,” IEEE/ASME Trans. Mechatron., 2, No. 2, pp. 63–76.
Yi,  L., and Tomizuka,  M., 1999, “Two-degree-of-freedom control with robust feedback control for hard disk servo systems,” IEEE/ASME Trans. Mechatron., 4, No. 1, pp. 17–24.
Furuta,  K., and Komiya,  K., 1982, “Design of model following controller,” IEEE Trans. Autom. Control, 27, No. 3, pp. 725–727.
Zhu,  H. A., Teo,  C. L., Hong,  G. S., and Poo,  A. N., 1992, “An enhanced scheme for the model-based control of robot manipulators,” Int. J. Control, 56, No. 6, pp. 1243–1261.
Zhu,  H. A., Hong,  G. S., Teo,  C. L., and Poo,  A. N., 1995, “Internal model control with enhanced robustness,” Int. J. Syst. Sci., 26, No. 2, pp. 277–293.
Doyle, J. C., Francis, B. A., and Tannenbaum, A. R., 1992, Feedback Control Theory, Macmillan Publishing, NY.
Workman, M. L., 1987, Adaptive Proximate Time-Optimal Servomechanisms, Ph.D. thesis, Stanford University.
Franklin, G. F., Powell, J. D., and Workman, M. L., 1990, Digital Control of Dynamic Systems, Addison Wesley.

Figures

Grahic Jump Location
Experimental results (SAS). (a) Position; (b) velocity; (c) control imput; (d) error.
Grahic Jump Location
Experimental results (ASE). (a) Position; (b) velocity; (c) control imput; (d) error.
Grahic Jump Location
Experimental results (conventional DOB). (a) Position; (b) velocity; (c) control imput; (d) error.
Grahic Jump Location
Simulation results (SAS). (a) Position; (b) velocity; (c) control imput; (d) error.
Grahic Jump Location
Simulation results (ASE). (a) Position; (b) velocity; (c) control imput; (d) error.
Grahic Jump Location
Simulation results (conventional DOB). (a) Position; (b) velocity; (c) control imput; (d) error.
Grahic Jump Location
External disturbance for simulation
Grahic Jump Location
Overall control system and saturation handing elements. (a) Block diagram of the overall control system; (b) conventional DOB; (c) ASE; (d) SAS
Grahic Jump Location
Experimental friction modeling; magnitude of static friction (a): 0.18, (b): −0.18, magnitude of Coulomb friction (c): 0.11, (d): −0.10, slope of positive viscous friction (e): 0.40, (f): −0.37
Grahic Jump Location
Hardware configuration of precision linear motor system
Grahic Jump Location
Precision linear motor system
Grahic Jump Location
Disturbance observer with self-adjusting saturation (SAS)
Grahic Jump Location
Disturbance observer with additional saturation element (ASE)
Grahic Jump Location
Block diagram of the system with saturation
Grahic Jump Location
Proximate time optimal servomechanism
Grahic Jump Location
Block diagram of the control scheme
Grahic Jump Location
Structure of disturbance observer

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In