0
TECHNICAL PAPERS

Angular Velocity Stabilization of a Rigid Body Via VSS Control

[+] Author and Article Information
T. Floquet

LAIL UPRES A CNRS 8021, Ecole Centrale de Lille, BP 48, Cité Scientifique, 59651 Villeneuve-d’ Ascq Cedex, FranceEquipe Commande des Systèmes (ECS), ENSEA, 6 Avenue du Ponceau, 95014 Cergy Cedex, France

W. Perruquetti

LAIL UPRES A CNRS 8021, Ecole Centrale de Lille, BP 48, Cité Scientifique, 59651 Villeneuve-d’ Ascq Cedex, France

J.-P. Barbot

Equipe Commande des Systèmes (ECS), ENSEA, 6 Avenue du Ponceau, 95014 Cergy Cedex, France

J. Dyn. Sys., Meas., Control 122(4), 669-673 (Feb 11, 2000) (5 pages) doi:10.1115/1.1316787 History: Received February 11, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Byrnes,  C. I., and Isidori,  A., 1991, “On the stabilization of rigid spacecraft” Automatica, 27, pp. 87–95.
Coron,  J. M., and Kerai,  E., 1996, “Explicit feedbacks stabilizing the attitude of a rigid spacecraft with two control torques,” Automatica, 32, pp. 669–677.
Morin,  P., and Samson,  C., 1997, “Time-varying exponential stabilization of the attitude of a rigid spacecraft with two controls,” IEEE Trans. Autom. Control, 42, pp. 528–534.
Astolfi,  A., and Rapaport,  A., 1998, “Robust stabilization of the angular velocity of a rigid body,” Syst. Control Lett., 34, pp. 257–267.
Nijmeier, H., and Van Der Schaft, A. J., 1990, Nonlinear Dynamics Control System, Springer-Verlag, Berlin.
Outbib,  R., and Sallet,  G., 1992, “Stabilization of the angular velocity of a rigid body revisited,” Syst. Control Lett., 18, pp. 93–98.
Aeyels,  D., 1985, “Stabilization by smooth feedback of the angular velocity of a rigid body,” Syst. Control Lett., 5, pp. 59–63.
Aeyels,  D., and Szafranski,  M., 1988, “Comments on the stability of the angular velocity of a rigid body,” Syst. Control Lett., 10, pp. 35–39.
Sontag,  E. D., and Sussmann,  H. J., 1989, “Further comments on the stability of the angular velocity of a rigid body,” Syst. Control Lett., 12, pp. 213–217.
Emel’yanov,  S. V., Korovin,  S. V., and Levantovsky,  L. V., 1993, “Higher Order Sliding Modes in Control Systems,” Diff. Equat., 29, No. 11, pp. 1627–1647.
Fridman, L., and Levant, A., 1996, “Sliding modes of higher order as a natural phenomenon in control theory,” F. Garofalo, L. Glielmo, eds., Robust Control via Variable Structure and Lyapunov Techniques, Lecture Notes in Control and Information Sciences 217, Springer-Verlag, pp. 107–133.
Levant,  A., 1993, “Sliding order and sliding accuracy in sliding mode control,” Int. J. Control, 58, No. 6, pp. 1247–1263.
Bartolini,  G., Ferrara,  A., and Usai,  E., 1998, “Chattering avoidance by second-order sliding mode control,” IEEE Trans. Autom. Control, 43, No. 2, pp. 241–246.
Sira-ramirez,  H., 1998, “Differential geometric methods in variable-structure control,” Int. J. Control, 48, No. 4, pp. 1359–1390.
Utkin, V. I., 1992, Sliding Modes in Control Optimization, CCES, Springer-Verlag.

Figures

Grahic Jump Location
State variables versus time for the first-order sliding mode controller
Grahic Jump Location
Finite time convergence of the state variables using the first and second-order sliding mode controllers

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In