Dynamical Adaptive First and Second-Order Sliding Backstepping Control of Nonlinear Nontriangular Uncertain Systems

[+] Author and Article Information
J. C. Scarratt, A. Zinober, R. E. Mills

Department of Applied Mathematics, The University of Sheffield, Sheffield, United Kingdom  

Miguel Rios-Bolı́var

Department de Sistemas de Control, Universidad de Los Andes, Merida 5101, Venezula   e-mail: riosm@ing.ula.ve

A. Ferrara

Department of Comp. and Systems Engineering, University of Pavia, Pavia, Italy   e-mail: ferrara@conpro.unipv.it

L. Giacomini

Department of Electrical Engineering and Comp. Science, Aston University, Aston, United Kingdome-mail: giacomil@aston.ac.uk

J. Dyn. Sys., Meas., Control 122(4), 746-752 (Mar 01, 2000) (7 pages) doi:10.1115/1.1321051 History: Received March 01, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Jiang, Z. P., and Praly, L., 1991, “Iterative designs of adaptive controllers for systems with nonlinear integrators,” Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, UK, pp. 2482–2487.
Kanellakopoulos,  I., Kokotović,  P. V., and Morse,  A. S., 1991, “Systematic Design of Adaptive Controllers for Feedback Linearizable Systems,” IEEE Trans. Autom. Control, 36, pp. 1241–1253.
Krstić,  M., Kanellakopoulos,  I., and Kokotović,  P. V., 1992, “Adaptive Nonlinear Control without Overparametrization,” Syst. Control Lett.,19, pp. 177–185.
Rios-Bolı́var, M., Sira-Ramı́rez, H., and Zinober, A. S. I., 1995, “Output Tracking Control via Adaptive Input-Output Linearization: A Backstepping Approach,” Proc. 34th IEEE CDC, New Orleans, Vol. 2, pp. 1579–1584.
Rios-Bolı́var, M., Zinober, A. S. I., and Sira-Ramı́rez, H., 1996, “Dynamical Sliding Mode Control via Adaptive Input-Output Linearization: A Backstepping Approach,” Robust Control via Variable Structure and Lyapunov Techniques, F. Garofalo and L. Glielmo, eds., Springer-Verlag, pp. 15–35.
Bartolini, G., Ferrara, A., Giacomini, L., and Usai, E., 1996, “A combined backstepping/second order sliding mode approach to control a class of nonlinear systems,” Proc. IEEE International Workshop on Variable Structure Systems, Tokyo, Japan, pp. 205–210.
Rios-Bolı́var,  M., Zinober,  A. S. I., and Sira-Ramı́rez,  H., 1997, “Dynamical Adaptive Sliding Mode Output Tracking Control of a Class of Nonlinear Systems,” Int. J. Robust Nonlinear Control, 7, pp. 387–405.
Rios-Bolı́var, M., 1997, “Adaptive Backstepping and Sliding Mode Control of Uncertain Nonlinear Systems,” Ph.D. thesis, Dept. of Applied Mathematics, The University of Sheffield.
Rios-Bolı́var,  M., and Zinober,  A. S. I., 1998, “A Symbolic Computation Toolbox for the Design of Dynamical Adaptive Nonlinear Controllers,” Appl. Math. Comp. Sci., 8, pp. 73–88.
Sontag,  E. D., 1989, “Smooth stabilization implies coprime factorization,” IEEE Trans. Autom. Control, 34, pp. 435–443.
Bartolini,  G., Ferrara,  A., and Usai,  E., 1997, “Applications of a suboptimal discontinuous control algorithm for uncertain second order systems,” Int. J. Robust Nonlinear Control, 7, pp. 299–320.
Bartolini,  G., Ferrara,  A., and Usai,  E., 1998, “Chattering avoidance by second-order sliding mode control,” IEEE Trans. Autom. Control, 43, pp. 241–246.
Kirk, D. E., 1970, Optimal Control Theory, Prentice-Hall, New Jersey.
Bartolini,  G., Ferrara,  A., and Usai,  E., 1997, “Output Tracking Control of Uncertain Nonlinear Second-Order Systems,” Automatica, 33, pp. 2203–2212.
Kravaris,  C., and Palanki,  S., 1988, AIChE J., 34, pp. 1119–1127.
Sira-Ramı́rez, H., and Delgado, M., 2000, “Passivity Based Mechatronic Regulation of Nonlinear Continuous Processes,” in Mechatronic Systems Techniques and Applications, C. T. Leondes, ed., Gordon and Breech Science Publishers, Australia, 1 , pp. 315–368.
Zinober, A. S. I., Scarratt, J. C., Mills, R. E., and Koshkouei, A. J., 2000, “New Developments in Dynamical Adaptive Backstepping Control,” in Nonlinear Control in the Year 2000, Isidori, A., Lamnabhi-Lagarrigue, F, and Respondek, W., eds., Springer-Verlag, Berlin, 2 , pp. 565–622.


Grahic Jump Location
DAB-SMC responses of the isothermal CSTR
Grahic Jump Location
DAB-SOSMC responses of the isothermal CSTR



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In