0
TECHNICAL PAPERS

Sliding-Mode Adaptive Observer Approach to Chaotic Synchronization

[+] Author and Article Information
Asad Azemi

Electrical Engineering Department, Penn State Delaware County Campus, Media, PA 19063e-mail: azemi@psu.edu

Edwin Engin Yaz

Electrical Engineering Department, University of Arkansas, Fayetteville, AR 72701e-mail: eyaz@uark.edu

J. Dyn. Sys., Meas., Control 122(4), 758-765 (Feb 04, 2000) (8 pages) doi:10.1115/1.1320449 History: Received February 04, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Walcott,  B. L., and Zak,  S. H., 1987, “State observation of nonlinear uncertain dynamical systems,” IEEE Trans. Autom. Control, 32, pp. 166–170.
Walcott,  B. L., Corless,  M. J., and Zak,  S. H., 1987, “Comparative study of non-linear state-observation technique,” Int. J. Control, 45, pp. 2109–2132.
Slotine,  J-J. E., Hedrick,  J. K., and Misawa,  E. A., 1986, “On sliding observers,” ASME J. Dyn. Syst., Meas., Control, 109, pp. 245–252.
Ruelle, D., 1989, Elements of Differentiable Dynamics and Bifurcation Theory, Academic Press, San Diego.
Bestle,  D., and Zeitz,  M., 1983, “Canonical form observer design for nonlinear time-variable systems,” Int. J. Control, 38, pp. 419–431.
Krener,  A. J., and Respondek,  W., 1985, “Nonlinear observer with linearizable error dynamics,” SIAM J. Control Optim., 23, pp. 197–216.
Isidori, A., 1985, Nonlinear Control Systems: An Introduction, Springer-Verlag, Berlin.
Baumann,  W., and Rugh,  W., 1986, “Feedback control of non-linear systems by extended linearization,” IEEE Trans. Autom. Control, 31, pp. 40–47.
Thau,  F. E., 1973, “Observing the state of non-linear dynamic systems,” Int. J. Control, 18, pp. 471–479.
Kou,  S. R., Elliot,  D. L., and Tarn,  T. J., 1975, “Exponential observer for nonlinear dynamic systems,” Inf. Control., 29, pp. 204–216.
Vidyasagar,  M., 1980, “On the stabilization of nonlinear systems using state detection,” IEEE Trans. Autom. Control, 25, pp. 504–509.
Yaz,  E., and Azemi,  A., 1993, “Observer design for discrete and continuous nonlinear stochastic systems,” Int. J. Syst. Sci., 21, pp. 2289–2302.
Yaz,  E., and Azemi,  A., 1993, “Sliding mode observers for nonlinear models with unbounded noise and measurement uncertainties,” Dynamics & Control, 3, pp. 217–235.
Corless,  M., and Leitmann,  G., 1983, “Adaptive control of systems containing uncertain functions and unknown functions with uncertain bounds,” JOTA, 41, pp. 155–168.
Chen,  Y. H., 1989, “Modified adaptive robust control system design,” Int. J. Control, 49, pp. 1869–1882.
Chen,  Y. H., 1989, “State estimation for non-linear uncertain systems: a design based on properties related to the uncertainty bound,” Int. J. Control, 52, pp. 1131–1146.
Chen,  Y. H., 1992, “Adaptive robust control of uncertain systems with measurement noise,” Automatica, 28, pp. 715–728.
Yoo,  D. S., and Chung,  M. J., 1992, “A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties,” IEEE Trans. Autom. Control, 37, pp. 860–865.
Carroll,  T. L., and Pecora,  L. M., 1991, “Synchronizing chaotic circuits,” IEEE Trans. Circuits Syst., 38, pp. 453–456.
Ogorzalek,  M. J., 1993, “Taming Chaos-Part I: Synchronization,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 40, pp. 693–699.
Nijmeijer,  H., and Mareels,  I. M. Y., 1997, “An observer looks at synchronization,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 44, pp. 882–890.
Sobiski,  D. J., and Thorp,  J. S., 1998, “PDMA-1: Chaotic Communication via the EKF,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 45, pp. 194–197.
Chua,  L., Wu,  C., Hung,  A., and Zhong,  G., 1993, “A universal circuit for studying and generating chaos-part I: routes to chaos,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 40, pp. 732–744.
Slotine, J-J. E., and Li, W., 1991, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ.
Johnson,  C. D., 1980, “Disturbance accommodation control: an overview of the subject,” J. Interdis. Model and Simul., 3, pp. 1–29.
Yaz,  E., and Azemi,  A., 1993, “Variable structure observer with a boundary-layer for correlated noise/disturbance models and disturbance minimization,” Int. J. Control, 57, pp. 1191–1206.
Azemi,  A., and Yaz,  E., 1993, “Dynamic disturbance minimization control for discrete nonlinear stochastic systems,” Optimal Control Applications & Methods, 14, pp. 181–194.

Figures

Grahic Jump Location
x1 and its estimate for the first parameter set
Grahic Jump Location
x2 and its estimate for the first parameter set
Grahic Jump Location
x3 and its estimate for the first parameter set
Grahic Jump Location
Absolute error in estimation of the state variables for the first parameter set
Grahic Jump Location
x1 and its estimate for the second parameter set
Grahic Jump Location
x2 and its estimate for the second parameter set
Grahic Jump Location
x3 and its estimate for the second parameter set
Grahic Jump Location
Absolute error in estimation of the state variables for the second parameter set
Grahic Jump Location
Absolute error in estimation of the state variables for the second parameter set, using a different γ value set
Grahic Jump Location
Absolute error in estimation of the first state using the second parameter set, for different q0
Grahic Jump Location
Absolute error in estimation of the first state using the second parameter set, for different q0
Grahic Jump Location
Chaotic orbits for the first parameter set
Grahic Jump Location
Chaotic orbits for the second parameter set

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In