0
TECHNICAL PAPERS

Identification of Wiener Systems With Known Noninvertible Nonlinearities

[+] Author and Article Information
Seth L. Lacy

Aerospace Engineering Department, University of Michigan, 1320 Beal Ave, Ann Arbor, MI 48109e-mail: sethlacy@umich.edu

R. Scott Erwin

Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Ave. SE, Kirtland AFB NM 87117e-mail: erwinr@plk.af.mil

Dennis S. Bernstein

Aerospace Engineering Department, University of Michigan, 1320 Beal Ave, Ann Arbor, MI 48109e-mail: dsbaero@umich.edu

J. Dyn. Sys., Meas., Control 123(4), 566-571 (Jan 29, 2001) (6 pages) doi:10.1115/1.1409256 History: Received January 29, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ljung, Lennart, 1999, System Identification: Theory for the User, Prentice Hall Information and System Sciences Series. Prentice Hall, 2nd edition, Jan.
Juang, Jer-Nan, 1999, Applied System Identification, Prentice Hall.
Van Overschee, Peter and De Moor, Bart, 1996, Subspace Identification for Linear Systems: Theory, Implementation, Applications, Kluwer.
Soderstrom, Torsten, and Stoica, Petre, 1989, System Identification, Prentice Hall.
Ahmed-Zaid, F., Ioannou, P. A., and Polycarpou, M. M., 1993, “Identification and control of aircraft dynamics using radial basis function networks,” Second IEEE Conference on Control Applications, Vancouver, BC, Sept., pp. 567–572.
Juditsky  , 1995, “Nonlinear black-box models in system identification: Mathematical foundations,” Automatica, 31, No. 12, pp. 1725–1750.
Songwu,  Lu, and Tamer,  Başar, 1998, “Robust nonlinear system identification using neural-network models,” IEEE Trans. Neural Netw., 9, No. 3, May, pp. 407–429.
Chen,  S., Billings,  S. A., and Grant,  P. M., 1990, “Non-linear system identification using neural networks,” Int. J. Control, 51, No. 6, pp. 1191–1214.
Chen,  S., Billings,  S. A., Cowan,  C. F. N., and Grant,  P. M., 1990, “Non-linear systems identification using radial basis functions,” Int. J. Syst. Sci., 21, No. 12, pp. 2513–2539.
Narendra,  Kumpati S., and Parthasarathy,  Kannan, 1990, “Identification and control of dynamical systems using neural networks,” IEEE Trans. Neural Netw., 1, No. 1, pp. 4–27.
Chen,  S., and Billings,  S. A., 1992, “Neural networks for nonlinear dynamic system modelling and identification,” Int. J. Control, 56, No. 2, pp. 319–346.
Brillinger,  D. R., 1970, “The identification of polynomial systems by means of higher order spectra,” J. Sound Vib., 12, No. 3, pp. 301–313.
Westwick,  D. T., and Kearney,  R. E., 1992, “A new algorithm for the identification of multiple input Wiener systems,” Biol. Cybern., 68, pp. 75–85.
Wigren,  Torbjörn, 1994, “Convergence analysis of recursive identification algorithms based on the Wiener model,” IEEE Trans. Autom. Control, 39, No. 11, pp. 2191–2206.
Greblicki,  Włodzimierz, 1997, “Nonparametric approach to Wiener system identification,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 44, No. 6, pp. 538–545.
Grazyna A. Pajunen, 1985, “Recursive identification of Wiener type nonlinear systems,” Proceedings of the 1985 American Control Conference, Vol. 3, Boston, MA, June, pp. 1365–1370.
Hasiewicz,  Z., 1987, “Identification of a linear system observed through zero-memory non-linearity,” Int. J. Syst. Sci., 18, No. 9, pp. 1595–1607.
Bai,  Er-Wei, 1998, “An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems,” Automatica, 34, No. 3, pp. 333–338.
Greblicki,  Włodzimierz, 1994, “Nonparametric identification of Wiener systems by orthogonal series,” IEEE Trans. Autom. Control, 39, No. 10, pp. 2077–2086.
Chen,  C. H., and Fassois,  S. D., 1992, “Maximum likelihood identification of stochastic Wiener-Hammerstein-type non-linear systems,” Mech. Syst. Signal Process., 6, No. 2, pp. 135–153.
Greblicki,  Włodzimierz, 1992, “Nonparametric identification of Wiener systems,” IEEE Trans. Inf. Theory, 38, No. 5, pp. 1487–1493.
Lovera,  Marco, Gustafsson,  Tony, and Verhaegen,  Michel, 2000, “Recursive subspace identification of linear and non-linear Wiener state-space models,” Automatica, 36, pp. 1639–1650.
Westwick,  David, and Verhaegen,  Michel, 1996, “Identifying MIMO Wiener systems using subspace model identification methods,” Signal Process., 52, pp. 235–258.
Emara-Shabaik,  Hosam E., Moustafa,  Kamal A. F., and Talaq,  Jaleel H. S., 1995, “On identification of parallel block-cascade nonlinear models,” Int. J. Syst. Sci., 26, No. 7, pp. 1429–1438.
Sjöberg  , 1995, “Nonlinear black-box modeling in system identification: A unified overview,” Automatica, 31, No. 12, pp. 1691–1724.
Chen, C.-H. and Fassois S. D., 1997, “On the estimation of stochastic Wiener-Hammerstein-type systems with non-smooth non-linearity,” Proceedings of the 1997 American Control Conference, Albuquerque, NM.
Hunter,  I. W., and Korenberg,  M. J., 1986, “The identification of nonlinear biological systems: Wiener and Hammerstein cascade models,” Biol. Cybern., 55, pp. 135–144.
Korenberg,  M. J., and Hunter,  I. W., 1986, “The identification of nonlinear biological systems: LNL cascade models,” Biol. Cybern., 55, pp. 125–134.
Wang, LeYi, Kolmanovsky, Ilya, and Sun, Jing, 2000, “On-line identification and adaption of lnt models for improved emission control in lean burn automotive engines,” Proceedings of the American Control Conference, Chicago IL, June, pp. 1006–1010.
Bayard, David S. and Eslami Mansour, 1984, “Parameter identification of linear systems using nonlinear noninvertible measurements,” Proceedings of the 23rd Conference on Decision and Control, IEEE, Dec., pp. 348–352.

Figures

Grahic Jump Location
Block diagram of a Wiener system
Grahic Jump Location
Sin nonlinearity. *’s represent identification data points (y and z), o’s represent optimal estimates (y⁁* and z)
Grahic Jump Location
Frequency response of actual (—) and estimated (--) systems of example 3
Grahic Jump Location
Deadzone nonlinearity, *’s represent identification data points (y and z), o’s represent optimal Estimates (y⁁* and z)
Grahic Jump Location
Frequency response of actual (—) and estimated (--) systems of example 5
Grahic Jump Location
Quantization nonlinearity. *’s represent identification data points (y and z), o’s represent optimal estimates (y⁁* and z)
Grahic Jump Location
Frequency response of actual (—) and estimated (--) systems of example 6
Grahic Jump Location
Signum nonlinearity. *’s represent identification data points (y and z), o’s represent optimal estimates (y⁁* and z)
Grahic Jump Location
Frequency response of actual (—) and estimated (--) systems of example 7

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In