Application of a Fast-Stabilizing Frequency Domain Parameter Estimation Method

[+] Author and Article Information
H. Van der Auweraer

LMS International, Interleuvenlaan 68, B-3001 Leuven, Belgiume-mail: herman.vanderauweraer@lms.be

P. Guillaume, P. Verboven

Department of Mechanical Engineering, WERK, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium

S. Vanlanduit

Department of Electrical Engineering, ELEC, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium

J. Dyn. Sys., Meas., Control 123(4), 651-658 (Jan 31, 2001) (8 pages) doi:10.1115/1.1410369 History: Received January 31, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Pintelon,  R., Guillaume,  P., Rolain,  Y., Schoukens,  J., and Van Hamme,  H., 1994, “Parametric identification of transfer functions in the frequency domain-a survey,” IEEE Trans. Autom. Control, 39, No. 11, pp. 2245–2260.
Leuridan, J., 1984, “Some Direct Parameter Model Identification Methods Applicable for Multiple Input Modal Analysis,” PhD thesis, Univ. of Cincinnati (US).
Maia, N., and Silva, J., 1997, Theoretical and Experimental Modal Analysis, Research Studies Press, Taunton, UK.
Kailath, T., 1980, Linear Systems, Prentice-Hall, New Jersey.
Van der Auweraer,  H., and Leuridan,  J., 1987, “Multiple Input Orthogonal Polynomial Parameter Estimation,” Mechanical Systems and Signal Processing, 1, No. 3, July pp. 259–272.
Bayard,  D. S., 1994, “High-order multivariable transfer function curve fitting: algorithms, sparse matrix methods and experimental results,” Automatica, 30, No. 9, pp. 1439–14444.
Overschee, P. van , and De Moor De, B. 1996, Subspace identification for linear systems: theory, implementation, applications, Kluwer Academic Publishers.
Van Huffel, S., and Vandewalle, J., 1991, The total least squares problem: computational aspects and analysis. Frontiers in Applied Mathematics, Series, Vol. 9, SIAM, Philadelphia, Pennsylvania.
Guillaume,  P., Schoukens,  J., Pintelon,  R., and Kollar,  I., 1991, “Crest-factor minimization using nonlinear Chebyshev approximation methods,” IEEE Trans. Instrum. Meas., 40, No. 6.
Schoukens, J., Rolain, Y., Gustafsson, F., and Pintelon, R., 1998, “Fast calculation of least-squares estimates for system identification,” Internal note, no. 1998-1, Vrije Universiteit Brussel.
Pintelon,  R., Guillaume,  P., Vandersteen,  G., and Polain,  Y., 1998, “Analysis, Development and Applications of TLS Algorithms in Frequency-Domain System Identification,” SIAM J. Matrix Anal. Appl., 19, No. 4, pp. 983–1004.
Cooper, J., 1999, “On the Use of Stability Plots for Modal Parameter Identification,” Proc. 2-nd Int. Conference on Identification in Engineering Systems, Swansea, pp. 375–381.
Van der Auweraer, H., Steinbichler, H., Haberstok, C., Freymann, R., Storer, D., and Linet, V., 2001, “Industrial applications of pulsed-laser espi vibration analysis,” Proc. IMAC 2001, Orlando (FL), pp. 490–496.
Van der Auweraer, H., Dierckx, B., Haberstock, C., Freymann, R., and Vanlanduit, S., 1999, “Structural Modeling of Car Panels Using Holographic Modal Analysis,” SAE paper 1999-01-1849, Proc. SAE Noise and Vibration Conference, Traverse City (MI), May 17–20, 1999, pp. 1495–1506.
Vanlanduit,  S., Guillaume,  P., and Schoukens,  J., 1998, “Development of a data reduction procedure with noise extraction for high resolution optical measurements,” Proc. SPIE, 3411, pp. 357–365.
Lembregts,  F., Snoeys,  R., and Leuridan,  J., 1987, “Application and Evaluation of Multiple Input Modal Parameter Estimation,” Int. Journal of Modal Analysis, 2, No. 1, pp. 19–31.
Van der Auweraer, H., Leurs, W., Mas, P., and Hermans, L., 2000, “On the Problem of Obtaining Consistent Estimates from Multi-Patch Modal Tests,” Proc. ISMA 25, Leuven (B), Sept. 13–15, 2000, pp. 119–1126.


Grahic Jump Location
Summed FRF for different shaker location runs
Grahic Jump Location
LSCE stabilization diagram
Grahic Jump Location
FDPI stabilization diagram
Grahic Jump Location
LSCF stabilization diagram
Grahic Jump Location
Comparison of measured and synthesized FRFs
Grahic Jump Location
Stabilization chart obtained with the LSCE estimator (above) and with the proposed frequency-domain least-squares estimator (below)
Grahic Jump Location
Comparison between acceleration sensor and holographic measurement of CW-ESPI (upper:amplitude, lower: phase)
Grahic Jump Location
Stabilization diagram LSCE
Grahic Jump Location
Stabilization diagram LSCF




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In