0
TECHNICAL PAPERS

Output-Only Subspace-Based Structural Identification: From Theory to Industrial Testing Practice

[+] Author and Article Information
Michèle Basseville

CNRSe-mail: basseville@irisa.fr

Albert Benveniste

Inria   Irisa, Campus de Beaulieu, 35042 Rennes Cedex, France

Maurice Goursat

Inria, BP 105, 78153 Le Chesnay Cedex, France

Luc Hermans

LM S International, Researchpark Haasrode Z1, Interleuvenlaan 68, 3001 Leuven, Belgium

Laurent Mevel

Irisa; Inria

Herman Van der Auweraer

LMS International

J. Dyn. Sys., Meas., Control 123(4), 668-676 (Feb 07, 2001) (9 pages) doi:10.1115/1.1410919 History: Received February 07, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Zimmerman, H., and Destuynder, R., 1982, “Flight Flutter Testing with Emphasis on the Tip Vane Method,” Proceedings, AGARD Conf. 339 on Ground Flight Testing & Correlation.
Schippers, P., and Persoon, A. J., 1995, “Flight Flutter Testing of a Turbo Prop Aircraft by using External Excitation Devices,” Proceedings, AGARD Conf. 566 on Advanced Aeroservoelastic Testing and Data Analysis, Rotterdam (NL), pp. 3.1–3.11.
De Vis, D., Gielen, L., Verhoeven, J.,;Nordmann, R., and Neumer, T., 1992, “Indirect identification of fluid structure interaction forces in boilerfeed pumps,” Proceedings, 10th International Modal Analysis Conference, San Diego (CA), pp. 47–53.
Ewins, D. J., 1984, Modal Testing: Theory and Practice, Research Studies Press, Letchworth, Hertfordshire, UK.
Juang, J. N., 1994, Applied System Identification, Prentice Hall, Englewood Cliffs, NJ.
De Roeck, G., Peeters, B., and Ren, W.-X., 2000, “Benchmark study on system identification through ambient vibration measurements,” Proceedings, 18th International Modal Analysis Conference, San Antonio, TX, pp. 1106–1112.
Viberg,  M., 1995, “Subspace-based methods for the identification of linear time-invariant systems,” Automatica, 31, No. 12, pp. 1835–1853.
Van Overschee, P., and De Moor, B., 1996, Subspace Identification for Linear Systems: Theory-Implementation-Applications, Kluwer Academic Publishers.
Van Overschee,  P., and De Moor,  B., 1994, “N 4SID : Subspace algorithms for the identification of combined deterministic-stochastic systems,” Automatica, 30, No. 2, pp. 75–93.
Viberg,  M., Wahlberg,  B., and Ottersten,  B., 1997, “Analysis of state space system identification methods based on instrumental variables and subspace fitting,” Automatica, 33, No. 9, pp. 1603–1616.
Peeters,  B., and De Roeck,  G., 1999, “Reference-based stochastic subspace identification for output-only modal analysis,” Mech. Syst. Signal Process., 13, No. 6, pp. 855–878.
Prevosto,  M., Olagnon,  M., Benveniste,  A., Basseville,  M., and LeVey,  G., 1991, “State-space formulation, a solution to modal parameter estimation,” J. Sound Vib., 148, pp. 329–342.
Stoı̈ca, P., and Moses, R. L., 1997, Introduction to Spectral Analysis, Prentice Hall.
Akaı̈ke,  H., 1974, “Stochastic theory of minimal realization,” IEEE Trans. Autom. Control, AC-19, pp. 667–674.
Benveniste,  A., and Fuchs,  J.-J., 1985, “Single sample modal identification of a nonstationary stochastic process,” IEEE Trans. Autom. Control, AC-30, pp. 66–74.
Akaı̈ke,  H., 1973, “Markovian representation of stochastic processes by canonical variables,” SIAM J. Control, 13, pp. 162–173.
Basseville,  M., Abdelghani,  M., and Benveniste,  A., 2000, “Subspace-based fault detection algorithms for vibration monitoring,” Automatica, 36, pp. 101–109.
Arun, K. S., and Kung, S. Y., 1986, “Generalized principal components analysis and its application in approximate stochastic realization,” Modeling and Application of Stochastic Processes, U. B. Desai, ed., Kluwer Academic Publishers, pp. 75–103.
Mevel, L., Benveniste, A., Basseville, M., and Goursat, M., 2000, “Blind subspace-based eigenstructure identification under nonstationary excitation using moving sensors,” IRISA Research Report no 1354, http://www.irisa.fr/bibli/publi/pi/2000/1354/1354.html.
Abdelghani, M., Goursat, M., Biolchini, T., Hermans, L., and Van der Auweraer, H., 1999, “Performance of output-only identification algorithms for modal analysis of aircraft structures,” Proceedings, 17th International Modal Analysis Conference, Kissimmee, FL, pp. 224–230.
Hermans,  L., and Van der Auweraer,  H., 1999, “Modal testing and analysis of structures under operational conditions: industrial applications,” Mech. Syst. Signal Process., 13, No. 2, pp. 193–216.
Basseville,  M., Benveniste,  A., Gach-Devauchelle,  B., Goursat,  M., Bonnecase,  D., Dorey,  P., Prevosto,  M., and Olagnon,  M., 1993, “Damage monitoring in vibration mechanics: issues in diagnostics and predictive maintenance,” Mech. Syst. Signal Process., 7, No. 5, pp. 401–423.
Goursat, M., Basseville, M., Benveniste, A., and Mevel, L., 2000, “A Scilab toolbox for output only modal analysis and diagnosis,” Proceedings, 18th International Modal Analysis Conference, San Antonio (TX). ftp://ftp.inria.fr/INRIA/Projects/Meta2/Scilab/contrib/MODAL/.
Allemang,  R. J., and Brown,  D. L., 1998, “A unified matrix polynomial approach to modal identification,” J. Sound Vib., 211, pp. 301–322.
Van der Auweraer, H., Leurs, W., Mas, P., and Hermans, L., 2000, “Modal parameter estimation from inconsistent data sets,” Proceedings, 18th International Modal Analysis Conference, San Antonio, TX, pp. 763–771.
Abdelghani,  M., Goursat,  M., and Biolchini,  T., 1999, “On-line monitoring of aircraft structures under unknown excitation,” Mech. Syst. Signal Process., 13, No. 6, pp. 839–853.
Ottersten,  B., Viberg,  M., and Kailath,  T., 1992, “Analysis of subspace fitting and ML techniques for parameter estimation,” IEEE Trans. Signal Process., 40, pp. 590–599.
Bauer,  D., Deistler,  M., and Scherrer,  W., 1999, “Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs,” Automatica, 35, pp. 1243–1254.
Benveniste, A., Basseville, M., and Mevel, L., 2000, “Convergence rates for eigenstructure identification using subspace methods,” Proceedings, 39th IEEE Conference on Decision and Control, Sydney, Australia.
Uhl, T., Bochniak, W., Lisowski, W., Hermans, L., Van der Auweraer, H., and Malecki, J., 1999, “FE-model correlation of a helicopter using ground test results,” Proceedings, 17th International Modal Analysis Conference, Kissimmee, FL, pp. 940–946.
Lisowski, W., Uhl, T., Malecki, J., Hermans, L., and Van der Auweraer, H., 2000, “Investigation of structural dynamics properties of helicopter airframe,” Proceedings, ISMA 25, Leuven (B), pp. 627–634.
Peeters, B., and De Roeck, G., 2000, “One year monitoring of the Z24-bridge: environmental effects versus damage events,” Proceedings, 18th International Modal Analysis Conference, San Antonio, TX, pp. 1570–1576.
Mevel,  L., Hermans,  L., and Van der Auweraer,  H., 1999, “Application of a subspace-based fault detection method to industrial structures,” Mech. Syst. Signal Process., 13, No. 6, pp. 823–838.
Basseville,  M., 1998, “On-board component fault detection and isolation using the statistical local approach,” Automatica, 34, No. 11, pp. 1391–1416.
Basseville, M., and Nikiforov, I. V., 1993, Detection of Abrupt Changes-Theory and Applications, Prentice Hall, Englewood Cliffs, N.J. http://www.irisa.fr/sigma2/kniga.
Gach-Devauchelle, B., 1991, “Diagnostic Mécanique des Fatigues sur les Structures Soumises à des Vibrations en Ambiance de Travail,” Thesis, Paris IX Dauphine University (in French).

Figures

Grahic Jump Location
Ariane V launcher-the main components
Grahic Jump Location
Ariane V launcher-time/frequency analysis of a signal measured at the bottom of a fuel tank in the EPS stage in the longitudinal direction. Abscissa: time, ordinate: frequency.
Grahic Jump Location
Ariane V launcher-stabilization diagram for the suspension modes of the fuel tanks in the EPS stage (data segment S1). Abscissa: frequencies, ordinate: increasing SVD truncation order. The symbols contain information on the convergence of damping ratios and of modal vector values. Results from the LMS CADA-X IN-OP module.
Grahic Jump Location
Ariane V launcher-relative change in the natural frequency of a mode for data segments S1, S2, S3 and S4
Grahic Jump Location
Helicopter-a typical stabilization diagram (sampling frequency 100 Hz and p=64). Abscissa: frequencies, ordinate: increasing SVD truncation order. The symbols contain information on the convergence of damping ratios and of modal vector values. Results from the LMS CADA-X IN-OP module.
Grahic Jump Location
Helicopter-natural frequency (upper) and damping ratio (lower) of mode at 6.4 Hz as a function of the SVD truncation order, for three different numbers of block-rows. Abscissa: frequency (upper) and damping ratio (lower), ordinate: increasing SVD truncation order.
Grahic Jump Location
Helicopter-Modeshape at 16.41 Hz
Grahic Jump Location
Meaning of the symbols in Figs. 9 and 10
Grahic Jump Location
Z24 Bridge-classical subspace identification: second record (2 sensors). Abscissa: increasing SVD truncation order, ordinate: frequencies. The symbols, explained in Fig. 8, stand for different damping ratios. Results from the INRIA Scilab modal analysis module.
Grahic Jump Location
Z24 Bridge-polyreference subspace identification with the two records. Abscissa: increasing SVD truncation order, ordinate: frequencies. The symbols, explained in Fig. 8, stand for different damping ratios. Results from the INRIA Scilab modal analysis module.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In