0
TECHNICAL PAPERS

Inverse-Dynamics Based State and Disturbance Observers for Linear Time-Invariant Systems

[+] Author and Article Information
Chia-Shang Liu, Huei Peng

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109

J. Dyn. Sys., Meas., Control 124(3), 375-381 (Jul 23, 2002) (7 pages) doi:10.1115/1.1485748 History: Received April 01, 1998; Online July 23, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Darouach,  M., 1994, “On the Novel Approach to the Design of Unknown Input Observers,” IEEE Trans. Autom. Control, 39(3), pp. 698–699.
Darouach,  M., Zasadzinski,  M., and Xu,  S. J., 1994, “Full-Order Observers for Linear Systems with Unknown Inputs,” IEEE Trans. Autom. Control, 39(3), pp. 606–609.
Hou,  M., and Muller,  P. C., 1992, “Design of Observers for Linear Systems with Unknown Inputs,” IEEE Trans. Autom. Control, 37(6), pp. 871–875.
Hou,  M., and Muller,  P. C., 1994, “Disturbance Decoupled Observer Design: A Unified Viewpoint,” IEEE Trans. Autom. Control, 39(6), pp. 1338–1341.
Syrmos,  V. L., 1994, “Disturbance Decoupling Using Constrained Sylvester Equations,” IEEE Trans. Autom. Control, 39(4), pp. 797–803.
Kobayashi,  N., and Nakamizo,  T., 1982, “An Observer Design for Linear Systems with Unknown Inputs,” Int. J. Control, 35(4), pp. 605–619.
Miller,  R. J., and Mukundan,  R., 1982, “On Designing Reduced-Order Observers for Linear Time-Invariant Systems Subject to Unknown Inputs,” Int. J. Control, 35(1), pp. 183–188.
Guan,  Y., and Saif,  M., 1991, “A Novel Approach to the Design of Unknown Input Observers,” IEEE Trans. Autom. Control, 36(5), pp. 632–635.
Ahlen,  A., and Sternad,  M., 1989, “Optimal Deconvolution Based on Polynomial Methods,” IEEE Trans. Acoust., Speech, Signal Process., 37(2), pp. 217–226.
Messner,  W., and Horwitz,  R., 1993, “Identification of a Nonlinear Function in a Dynamical System,” ASME J. Dyn. Syst., Meas., Control, 115(4), pp. 587–591.
Francis,  B. A., and Wonham,  W. M., 1975, “The Internal Model Principle for Linear Multivariable Regulator,” Appl. Math. and Opt., 2, pp. 170–194.
Hara,  S., Yamamoto,  Y., Omata,  T., and Nakano,  M., 1988, “Repetitive Control System: A New Type Servo System for Periodic Exogenous Signals,” IEEE Trans. Autom. Control, 33(7), July, pp. 659–668.
Chew,  K. K., and Tomizuka,  M., 1990, “Steady-State and Stochastic Performance of a Modified Discrete-Time Prototype Repetitive Control,” ASME J. Dyn. Syst., Meas., Control, 112(1), pp. 35–41.
Yang,  W. C., and Tomizuka,  M., 1994, “Disturbance Rejection Through an External Model for Non-minimum Phase Systems,” ASME J. Dyn. Syst., Meas., Control, 116(1), pp. 39–44.
Ichikawa,  K., 1994, “Exact Model Matching with Disturbance Suppression,” Int. J. Control, 60(3), pp. 425–434.
Yaz,  E., and Azemi,  A., 1993, “Variable Structure Observer with a Boundary-Layer for Correlated Noise/Disturbance Models and Disturbance Minimization,” Int. J. Control, 57(5), pp. 1191–1206.
Levine,  J., and Marino,  R., 1986, “Nonlinear System Immersion, Observers and Finite-Dimensional Filters,” Syst. Control Lett., 7, pp. 133–142.
Stein,  J. L., and Park,  Y., 1988, “Measurement Signal Selection and a Simultaneous State and Input Observer,” ASME J. Dyn. Syst., Meas., Control, 110(2), June, pp. 151–159.
Park,  Y., and Stein,  J. L., 1988, “Closed-loop, State and Input Observer for Systems with Unknown Inputs,” Int. J. Control, 48(3), pp. 1121–1136.
Tu,  J. F., and Stein,  J. L., 1998, “Modeling Error Compensation for Observer Design,” Int. J. Control, 69(2), pp. 329–345.
Corless,  M., and Tu,  J. F., 1998, “State and Input Estimation for a Class of Uncertain Systems,” Automatica, 34(6), pp. 757–764.
Chen, C. T., 1984, Linear System Theory and Design, Holt, Rinehart and Winston, New York.
Vidyasagar, 1978, Nonlinear Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ.
Zhou, K., Doyle, J. C., and Glover, K., 1996, Robust and Optimal Control, Prentice-Hall, NJ.
Mangoubi, R., 1998, Robust Estimation and Failure Detection: A Concise Treatment, Springer, New York.
Nagpal,  K. M., and Khargonekar,  P. P., 1991, “Filtering and Smoothing in an H Setting,” IEEE Trans. Autom. Control, 36(2), pp. 152–166.
Shaked, U., and Theodor Y., 1992, “H-Optimal Estimation: A Tutorial,” Proc. of the 31st Conference on Decision and Control, pp. 2278–2286.
Zanten, A., Erhardt, R., and Pfaff, G., 1995, “VDC, the Vehicle Dynamics Control System of Bosch,” paper#950759, also in ABS-TCS-VDC—Where Will The Technology Lead Us?, SAE PT-57, Warrendale, PA.
LeBlanc,  D. J., Ervin,  D. J., Johnson,  G. E., Venhovens,  P. J. Th., Gerber,  G., DeSonia,  R., Lin,  C.-F., Pilutti,  T., and Ulsoy,  A. G., 1996, “CAPC: An Implementation of a Road-departure Warning System,” IEEE Control Syst. Mag., 16(6), Dec., pp. 61–71.
Fenton,  R. E., Melocik,  G. C., and Olson,  K. W., 1976, “On the Steering of Automated Vehicles: Theory and Experiment,” IEEE Trans. Autom. Control, AC-21(3), pp. 306–315.

Figures

Grahic Jump Location
Diagram of a standard H filtering problem
Grahic Jump Location
The bicycle vehicle handling model
Grahic Jump Location
Disturbance and lateral speed estimation results (inverse-dynamics approach)
Grahic Jump Location
Disturbance and lateral speed estimation results (H approach)
Grahic Jump Location
Disturbance and lateral speed estimation results (inverse-dynamics approach, combined uncertainties)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In