0
TECHNICAL PAPERS

Asymptotic Parameter Estimation via Implicit Averaging on a Nonlinear Extended System

[+] Author and Article Information
Anindya Chatterjee

Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, Indiae-mail: anindya@mecheng.iisc.ernet.in

Joseph P. Cusumano

Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USAe-mail: jpc@crash.esm.psu.edu

J. Dyn. Sys., Meas., Control 125(1), 11-18 (Mar 10, 2003) (8 pages) doi:10.1115/1.1540638 History: Received December 01, 1999; Revised July 01, 2002; Online March 10, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chatterjee, A., and Cusumano, J. P., 1999, “Parameter Estimation in a Nonlinear Vibrating System Using an Observer for an Extended System,” ASME Paper No. DETC99/VIB-8067 (available on CDROM).
Bard, Y., 1974, Nonlinear Parameter Estimation, Academic Press, Orlando, FL.
Jezequel, L., and Lamarque, C. H., (eds), 1992, Euromech 280, Proc. of Int. Symp. on Identification of Nonlinear Mechanical Systems from Dynamic Tests, Ecully, France, 1991, A. A. Balkema, Rotterdam, Netherlands.
Srinath, M. D., Rajasekaran, P. K., and Viswanathan, R., 1996, Introduction to Statistical Signal Processing With Applications, Prentice-Hall, NJ (Indian Reprint published by Prentice-Hall of India, New Delhi, 1999).
Masri,  S. F., and Caughey,  T. K., 1979, “A Nonparametric Identification Technique for Nonlinear Dynamic Problems,” ASME J. Appl. Mech., 46, pp. 433–447.
Masri,  S. F., Miller,  R. K., Saud,  A. F., and Caughey,  T. K., 1987, “Identification of Nonlinear Vibrating Structures: Part I-Formulation,” ASME J. Appl. Mech., 54, pp. 918–922.
Masri,  S. F., Miller,  R. K., Saud,  A. F., and Caughey,  T. K., 1987, “Identification of Nonlinear Vibrating Structures: Part II-Applications,” ASME J. Appl. Mech., 54, pp. 923–929.
Mohammad,  K. S., Worden,  K., and Tomlinson,  G. R., 1992, “Direct Parameter Estimation for Linear and Non-Linear Structures,” J. Sound Vib., 152(3), pp. 471–499.
Feeny, B. F., and Yuan, C. M., 1999, “Parametric Identification of an Experimental Two-Well Oscillator,” Proc. of 1999 ASME Design Engineering and Technical Conf., Las Vegas, Nevada, ASME Paper, No. DETC99/VIB-8361.
Tadi,  M., and Rabitz,  H., 1997, “Explicit Method for Parameter Identification,” J. Guid. Control Dyn., 20(3), pp. 486–491.
Mook,  D. J., 1989, “Estimation and Identification of Nonlinear Dynamic Systems,” AIAA J., 27(7), pp. 968–974.
Yasuda,  K., and Kamiya,  K., 1999, “Experimental Identification Technique of Nonlinear Beams in Time Domain.” Nonlinear Dyn., 18, pp. 185–202.
Eykhoff, P., 1974, System Identification: Parameter and State Estimation, John Wiley & Sons, London, (Reprinted 1977.) Chap. 13.
Rajamani,  R., and Cho,  Y. M., 1998, “Existence and Design of Observers for Nonlinear Systems: Relation to Distance to Unobservability,” Int. J. Control, 69(5), pp. 717–731.
Chang,  P. H., Lee,  J. W., and Park,  S. H., 1997, “Time Delay Observer: A Robust Observer for Nonlinear Plants,” ASME J. Dyn. Syst., Meas., Control, 119, pp. 521–527.
Bernard,  O., Sallet,  G., and Sciandra,  A., 1998, “Nonlinear Observers for a Class of Biological Systems: Application to Validation of a Phytoplanktonic Growth Model,” IEEE Trans. Autom. Control, 43(8), pp. 1056–1065.
Farza,  M., Busawon,  K., and Hammouri,  H., 1998, “Simple Nonlinear Observers for On-line Estimation of Kinetic Rates in Bioreactors,” Automatica, 34(3), pp. 301–318.
Maybhate,  A., and Amritkar,  R. E., 2000, “Dynamics Algorithm for Parameter Estimation and its Applications,” Phys. Rev. E, 61(6), pp. 6461–6470.
Ahmed,  J., Coppola,  V. T., and Bernstein,  D. S., 1998, “Adaptive Asymptotic Tracking of Spacecraft Attitude Motion With Inertia Matrix Identification.” J. Guid. Control Dyn., 21(5), pp. 684–691.
Sanders, J. A., and Verhulst, F., 1985, Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences 59, Springer-Verlag, New York.
Golub, G. H., and Van Loan, C. F., 1989, Matrix Computations, Second Edition, John Hopkins University Press, Baltimore, MD.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1986, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge.

Figures

Grahic Jump Location
Parameter estimation for a forced, chaotic oscillator (perfect model, no noise). See text for details.
Grahic Jump Location
Effect of noise on parameter estimation
Grahic Jump Location
Estimating two parameters that appear nonlinearly
Grahic Jump Location
Estimating parameters in the presence of error in forcing frequency

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In