0
TECHNICAL PAPERS

Combined Synthesis of State Estimator and Perturbation Observer

[+] Author and Article Information
SangJoo Kwon, Wan Kyun Chung

Robotics & Bio-Mechatronics Lab., Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea

J. Dyn. Sys., Meas., Control 125(1), 19-26 (Mar 10, 2003) (8 pages) doi:10.1115/1.1540112 History: Received May 01, 2002; Revised September 01, 2002; Online March 10, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Friedland, B., 1996, Advanced Control System Design, Prentice-Hall, New Jersey.
Slotine,  J.-J. E., Hedrick,  J. K., and Misawa,  E. A., 1987, “On Sliding Observers for Nonlinear Systems,” ASME J. Dyn. Syst., Meas., Control, 109(3), pp. 245–252.
Walcott,  B. L., and Zak,  S. H., 1988, “Combined Observer-Controller Synthesis for Uncertain Dynamical Systems with Applications,” IEEE Trans. Syst. Man. Cybern., 18, Feb., pp. 88–104.
Moura,  J. T., Elmali,  H., and Olgac,  N., 1997, “Sliding Mode Control with Sliding Perturbation Observer,” ASME J. Dyn. Syst., Meas., Control, 119(4), pp. 657–665.
Chang,  P. H., Lee,  J. W., and Park,  S. H., 1997, “Time Delay Observer: A Robust Observer for Nonlinear Plants,” ASME J. Dyn. Syst., Meas., Control, 119(3), pp. 521–527.
Gu,  D.-W., and Poon,  F. W., 2001, “A Robust State Observer Scheme,” IEEE Trans. Autom. Control, 46(12), pp. 1958–1963.
Petersen,  I. R., and McFarlane,  D. C., 1994, “Optimal Guaranteed Cost Control and Filtering for Uncertain Linear Systems,” IEEE Trans. Autom. Control, 39(9), pp. 1971–1977.
Shaked,  U., and de Souza,  C. E., 1995, “Robust Minimum Variance Filtering,” IEEE Trans. Signal Process., 43(11), pp. 2474–2483.
Tsui,  C.-C., 1996, “A New Design Approach to Unknown Input Observers,” IEEE Trans. Autom. Control, 41(3), pp. 464–468.
Hou,  M., Pugh,  A. C., and Muller,  P. C., 1999, “Disturbance Decoupled Functional Observers,” IEEE Trans. Autom. Control, 44(2), pp. 382–386.
Kwon, S. J., and Chung, W. K., 2002, “A Discrete-Time Design and Analysis of Perturbation Observer,” Proc. of 2002 American Control Conf., pp. 2653–2658.
Kim,  J. H., and Oh,  J.-H., 2000, “Robust State Estimator of Stochastic Linear Systems with Unknown Disturbances,” IEE Proc.: Control Theory Appl., 147(2), pp. 224–228.
Umeno,  T., and Hori,  Y., 1991, “Robust Speed Control of DC Servomotors Using Modern Two Degree-of-Freedom Controller Design,” IEEE Trans. Ind. Electron., 38(5), pp. 363–368.
Ohnishi,  K., Shibata,  M., and Murakami,  T., 1996, “Motion Control for Advanced Mechatronics,” IEEE/ASME Trans. Mechatron., 1(1), pp. 56–67.
Morgan,  R. G., and Ozguner,  U., 1985, “A Decentralized Variable Structure Control Algorithm for Robotic Manipulators,” IEEE Trans. Rob. Autom., RA-1(1), pp. 57–65.
Hsia,  T. C., 1989, “A New Technique for Robust Control of Servo Systems,” IEEE Trans. Ind. Electron., 36(1), pp. 1–7.
Youcef-Toumi,  K., and Ito,  O., 1990, “A Time Delay Controller for Systems With Unknown Dynamics,” ASME J. Dyn. Syst., Meas., Control, 112(1), pp. 133–142.
Astrom, K. J., and Wittenmark, B., 1997, Computer-Controlled Systems: Theory and Design, 3rd Edition, Prentice-Hall, New Jersey.
Lewis, F. L., 1992, Applied Optimal Control and Estimation, Prentice-Hall, New Jersey.
Grewal, M. S., and Andrews, A. P., 1993, Kalman Filtering: Theory and Practice, Prentice-Hall, New Jersey.

Figures

Grahic Jump Location
Dynamical inter-connection between state estimator and perturbation observer in the combined observer
Grahic Jump Location
Frequency response of Eq. (29): Sensitivity of state estimation error to perturbation
Grahic Jump Location
Frequency response of Eq. (30): Sensitivity of state estimation error to sensor noise
Grahic Jump Location
Comparison of the frequency responses of Eqs. (33) (“Combined”) and (34) (“Full-state”)
Grahic Jump Location
(Simulation) a) true position and velocity, b) position estimation error, and c) velocity estimation error
Grahic Jump Location
(Simulation) a) perturbation (w(t)) and perturbation estimation error (w̃(t)); and b) actuator input, u(t)[V]=0.5 sin(10t) and disturbance, d(t)[V]=2 sin(40t)+0.5 sin(80t)
Grahic Jump Location
(Experiment) a) reference trajectory, b) tracking error, and c) perturbation estimate
Grahic Jump Location
(Experiment) a) tracking error (x-axis), b) tracking error (y-axis), and c) input disturbance
Grahic Jump Location
(Experiment) a) velocity estimate (x-axis) and b) perturbation estimate (x-axis)
Grahic Jump Location
Performance of the discrete Kalman filter (DKF) with and without the perturbation observer (PO): a) position estimation error, b) velocity estimation error, and c) process noise (perturbation)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In