0
TECHNICAL BRIEFS

Mixed H2/H∞ Control for State-Delayed Linear Systems and a LMI Approach to the Solution of Coupled AREs

[+] Author and Article Information
M. D. S. Aliyu

Department of Electrical Engineering, Louisiana State University, Baton Rouge, LA 70803 e-mail: dikko@ee.lsu.edu

J. Dyn. Sys., Meas., Control 125(2), 249-253 (Jun 04, 2003) (5 pages) doi:10.1115/1.1570451 History: Received February 01, 2002; Revised January 01, 2003; Online June 04, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

He,  J.-B., Wang,  Q.-G., and Lee,  T.-H., 1998, “H Disturbance Attenuation for State Delayed Systems,” Syst. Control Lett., 33, pp. 105–114.
Hwa Lee,  J., Woo Kim,  S., and Hyun Kwon,  W., 1994, “Memoryless H Controllers for State Delayed Systems,” IEEE Trans. Autom. Control, 39(1), pp. 159–162.
Mahmood,  M. S., and Muthairi,  N. F., 1994, “Quadratic Stabilization of Continuous-Time Systems With State-Delay and Norm-Bounded Time-Varying Uncertainties,” IEEE Trans. Autom. Control, 39(11), pp. 2135–2140.
Phoojaruenchanachai,  S., and Furuta,  K., 1992, “Memoryless Stabilization of Uncertain Linear Systems Including Time-Varying State Delays,” IEEE Trans. Autom. Control, 37(7), pp. 1020–1026.
Meinsma,  G., and Zwart,  H., 2000, “On H Control for Dead-Time Systems,” IEEE Trans. Autom. Control, 45(2), pp. 272–285.
Bernstein,  D. S., and Haddad,  W. M., 1989, “LQG Control with H Performance Bound,” IEEE Trans. Autom. Control, 34(3), pp. 293–305.
Khargonekar,  P. P., and Rotea,  M. A., 1991, “Mixed H2/H Control: A Convex Approach,” IEEE Trans. Autom. Control, 36(7), pp. 824–837.
Limebeer,  D. J. N., Anderson,  B. D. O., and Hendel,  B., 1994, “A Nash Game Approach to Mixed H2/H Control,” IEEE Trans. Autom. Control, 39(1), pp. 262–283.
Basar, T., and Bernhard, P., 1991, H.Optimal Control and Related Minimax Design, Birkhauser, New York.
Gahinet, P., Nemirovsky, A., Laub, A. J., and Hilali, M., 1995, LMI Control Toolbox, Mathworks Inc. Mass.
Lee, E. B., and Markus, L., 1967, Foundation of Optimal Control, SIAM Series on Applied Mathematics, John Wiley & Sons Inc., New York.
Boyd, S., Ghaoui, L. E., Feron, E., and Balakhrishnan, V., 1994, Linear Matrix Inequalities in Systems and Control Theory, SIAM Series in Systems and Control, Philadelphia.
Frieling,  G., Jank,  G., and Abou-kandil,  H., 1996, “On the Global Existence of Solutions to Coupled Matrix Riccati Equations in Closed-Loop Nash Games,” IEEE Trans. Autom. Control, 41(2), pp. 264–269.
Zhou, K., Doyle, J. C., and Glover, K., 1996, Robust and Optimal Control, Prentice Hall, New Jersey.

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In