0
TECHNICAL PAPERS

l1 Controller Design for a High-Order 5-Pool Irrigation Canal System

[+] Author and Article Information
Pierre-Olivier Malaterre

Research-Engineer at UR Irrigation, Cemagref, 361 rue J.-F. Breton, BP 5095, 34033 Montpellier Cedex 1, Francee-mail: pom@montpellier.cemagref.fr

Mustafa Khammash

Department of Mechanical Engineering, Engr II Bldg., Room 2324, University of California, Santa Barbara, Santa Barbara, CA 93106-5070 e-mail: khammash@engineering.ucsb.edu

J. Dyn. Sys., Meas., Control 125(4), 639-645 (Jan 29, 2004) (7 pages) doi:10.1115/1.1636776 History: Received December 20, 2000; Revised July 07, 2003; Online January 29, 2004
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Dahleh, M. A., and Diaz-Bobillo, I. J., 1995, “Control of Uncertain Systems: a Linear Programming Approach,” Prentice-Hall.
Malaterre,  P.-O., Rogers,  D. C., and Schuurmans,  J., 1998, “Classification of Canal Control Algorithms,” ASCE Journal of Irrigation and Drainage Engineering,124, pp. 3–10. ISSN 0733-9437.
Shand, M., 1971, “Automatic Downstream Control Systems for Irrigation Canals,” Ph.D. thesis, University of California, Berkeley, CA, p. 159.
Deltour, J.-L., 1992, “Application de l’automatique numérique à la régulation des canaux; Proposition d’une méthodologie d’étude,” Ph.D. thesis, Institut National Polytechnique de Grenoble, in French.
Schuurmans,  J., Hof,  A., Dijkstra,  S., Bosgra,  O. H., and Brouwer,  R., 1999, “Simple Water Level Controller for Irrigation and Drainage Canals,” J. Irrig. Drain Eng. , 125, pp. 189–195.
Litrico, X., 1999, “Modélisation, identification et commande robuste de systèmes hydrauliques à surface libre,” Ph.D. thesis, ENGREF—Cemagref, in French.
Litrico,  X., and Georges,  D., 1999, “Robust Continuous-Time and Discrete-Time Flow Control of a Dam-River System (II): Controller Design,” Appl. Math. Model., 23(11), pp. 829–846.
Clemmens, A., 1999, “Real-Time Operation of Water Resources Systems: On-Versus off-Line Optimization,” 26th Annual conference of the Water Resources Planning and Management Division of the American Society of Civil Engineers, p. 10. Tempe, Arizona, June 6–9, 1999.
Bodley,  W., and Wylie,  E., 1978, “Control of Transient in Series Channel With Gates,” J. Hydraul. Div., Am. Soc. Civ. Eng., pp. 1395–1407.
Liu,  F., Feyen,  J., Malaterre,  P.-O., Baume,  J.-P., and Kosuth,  P., 1998, “Development and Evaluation of Canal Automation Algorithm CLIS,” J. Irrig. Drain Eng. , 124, pp. 40–46. ISSN 0733-9437.
Lin, Z., and Manz, D., 1992, “Optimal Operation of Irrigation Canal Systems Using Nonlinear Programming—Dynamic Simulation Model,” CEMAGREF-IIMI International Workshop, Montpellier, pp. 297–306.
Sanders,  B. F., and Katopodes,  N. D., 1999, “Control of Canal Flow by Adjoint Sensitivity Method,” J. Irrig. Drain Eng. , 125, pp. 287–297.
de Albuquerque,  F. G., and Labadie,  J. W., 1997, “Optimal Nonlinear Predictive Control for Canal Operations,” J. Irrig. Drain Eng. , 123, pp. 45–54.
Chen, M.-L., 2001, “Commandes optimale et robuste des équations aux dérivées partielles régissant le comportement des systèmes hydrauliques à surface libre,” Ph.D. thesis, Institut National Polytechnique de Grenoble, in French.
Khammash,  M., 2000, “A New Approach to the Solution of the l1 Control Problem: the Scaled-Q Method,” IEEE Trans. Autom. Control, 45, pp. 180–187.
Baume, J.-P., Sau, J., and Malaterre, P.-O., 1998, “Modeling of Irrigation Channel Dynamics for Controller Design,” IEEE International Conference on Systems, Man and Cybernetics (SMC98), San Diego, CA, pp. 3856–3861.
Khammash, M., Salapaka, M., and Van Voorhis, T., 1998, “Synthesis of Globally Optimal Controllers in l1 Using Linear Relaxation,” Proceedings of the 37th IEEE Conference on Decision and Control, 3 , pp. 3315–3320.
Balogun,  O., Hubbard,  M., and DeVries,  J., 1988, “Automatic Control of Canal Flow Using Linear Quadratic Regulator Theory,” Journal of Hydraulic Engineering,114(1), pp. 75–102.
Garcia,  A., Hubbard,  M., and DeVries,  J., 1992, “Open Channel Transient Flow Control by Discrete Time LQR Methods,” Automatica, 28(2), pp. 255–264.
Cunge, J. A., 1966, “Etude d’un Schéma de Différences Finies Appliqué à l’intégration Numérique d’un Certain Type d’équations Hyperboliques d’écoulement,” Ph.D. thesis, Faculté des Sciences de Grenoble, in French.
Cunge, J., Holly, F., and Verwey, A., 1980, “Practical Aspects of Computational River Hydraulics,” Pitman Advanced Publishing Program. p. 420.
Mahmood, K., and Yevjevich, V., 1975, “Unsteady Flow in Open Channels, Volume 1 and 2,” Fort Collins, USA: Water resources publications. p. 923.
Malaterre,  P.-O., 1998, “Pilote: Linear Quadratic Optimal Controller for Irrigation Canals,” J. Irrig. Drain Eng. , 124, pp. 187–194.
Kwakernaak, H., and Sivan, R., 1972, “Linear Optimal Control Systems,” New York: Wiley-Interscience. p. 575.
Skogestad, S., and Postlethwaite, I., 1998, “Multivariable Feedback Control, Analysis and Design,” Baffins lane, Chichester, West Sussex PO19 1UD, England: John Wiley and Sons Ltd.
Qi, X., Khammash, M. H., and Salapaka, M. V., 2001, “Optimal Controller Synthesis With Multiple Objectives,” ACC.
Malaterre, P.-O., and Baume, J.-P., 1999, “Optimum Choice of Control Action Variables and Linked Algorithms. Comparison of Different Alternatives,” ASCE-ICID Workshop on Modernization of Irrigation Water Delivery Systems, in Phoenix, AZ, USA.
Baume, J.-P., Malaterre, P.-O., and Sau, J., 1999, “Tuning of PI to Control an Irrigation Canal Using Optimization Tools,” ASCE-ICID Workshop on Modernization of Irrigation Water Delivery Systems, in Phoenix, Arizona, USA.
Larminat, P., 1993, “Automatique, Commande des Systèmes Linéaires,” Hermès. p. 321.
Malaterre, P.-O., and Baume, J.-P., 1997, “Sic 3.0, a Simulation Model for Canal Automation Design,” International Workshop on the Regulation of Irrigation Canals: State of the Art of Research and Applications, RIC97, Marrakech (Morocco).

Figures

Grahic Jump Location
Canal “type 1” from Cemagref Bench Marks
Grahic Jump Location
Disturbance rejection problem
Grahic Jump Location
Lower and upper bounds of ‖Φ‖1
Grahic Jump Location
Comparison of the closed-loop response of the 3 controllers on SIC© (nonlinear model) on ε-worst-case perturbation wε,LQG
Grahic Jump Location
Comparison of the closed-loop response of the 3 controllers on SIC© (nonlinear model) on classical periodic perturbation

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In