On Zeros of Discrete-Time Models for Collocated Mass-Damper-Spring Systems

[+] Author and Article Information
Mitsuaki Ishitobi, Shan Liang

Department of Mechanical Engineering and Materials Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan

J. Dyn. Sys., Meas., Control 126(1), 205-210 (Apr 12, 2004) (6 pages) doi:10.1115/1.1650383 History: Revised July 16, 2003; Online April 12, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Schrader,  C. B., and Sain,  M. K., 1989, “Research on System Zeros: a Survey,” Int. J. Control, 50(4), pp. 1407–1433.
Åström,  K. J., Hagander,  P., and Sternby,  J., 1984, “Zeros of Sampled Systems,” Automatica, 20(1), pp. 31–38.
Goodwin, G. C., and Sin, K. S., 1984, Adaptive Filtering, Prediction and Control, Prentice-Hall, Englewood Cliffs, New Jersey.
Williams,  T., 1989, “Transmission-Zero Bounds for Large Space Structures, with Applications,” J. Guid. Control Dyn., 12(1), pp. 33–38.
Miu,  D. K., and Yang,  B., 1994, “On Transfer Function Zeros of General Colocated Control Systems with Mechanical Flexibilities,” ASME J. Dyn. Syst., Meas., Control, 116(1), pp. 151–154.
Lin,  J. L., and Juang,  J. N., 1995, “Sufficient Conditions for Minimum-Phase Second-Order Linear Systems,” J. Vib. Control, 1(2), pp. 183–199.
Calafiore,  G., and Carabelli,  S., and Bona,  B., 1997, “Structural Interpretation of Transmission Zeros for Matrix Second-Order Systems,” Automatica, 33(4), pp. 745–748.
Lin,  J. L., 1999, “On Transmission Zeros of Mass-Dashpot-Spring Systems,” ASME J. Dyn. Syst., Meas., Control, 121(2), pp. 179–183.
Tuschák, R., 1981, “Relations Between Transfer and Pulse Transfer Functions of Continuous Processes,” Proceedings of the 8th IFAC World Congress, Vol. 1, Kyoto, Japan, pp. 429–433.
Keviczky, L., and Kumar, K. S. P., 1981, “On the Applicability of Certain Optimal Control Methods,” Proceedings of the 8th IFAC World Congress, Vol. 1, Kyoto, Japan, pp. 475–480.
Bondarko,  V. A., 1984, “Discretization of Continuous Linear Dynamic Systems-Analysis of the Methods,” Syst. Control Lett., 5(2), pp. 97–101.
Hagiwara,  T., Yuasa,  T., and Araki,  M., 1993, “Stability of the Limiting Zeros of Sampled-Data Systems with Zero- and First-Order Holds,” Int. J. Control, 58(6), pp. 1325–1346.
Hayakawa,  Y., Hosoe,  S., and Ito,  M., 1983, “On the Limiting Zeros of Sampled Multivariable Systems,” Syst. Control Lett., 2(5), pp. 292–300.
Weller,  S. R., 1999, “Limiting Zeros of Decouplable MIMO Systems,” IEEE Trans. Autom. Control, AC-44(1), pp. 129–134.
Ishitobi,  M., 2000, “A Stability Condition of Zeros of Sampled Multivariable Systems,” IEEE Trans. Autom. Control, AC-45(2), pp. 295–299.
Laub,  A. J., and Arnold,  W. F., 1984, “Controllability and Observability Criteria for Multivariable Linear Second-Order Models,” IEEE Trans. Autom. Control, 29(2), pp. 163–165.
Ikeda  M. , 1990, “Zeros and Their Relevance to Control-[III]; System Structure and Zeros (in Japanese),” Journal of the Society of Instrument and Control Engineers, 29(5), pp. 441–448.
Gantmacher, F. R., 1959, The Theory of Matrices, Vols. I and II, Chelsea, New York.
Rosenbrock, H. H., 1970, State-space and Multivariable Theory. Nelson, London.
Suda,  N., and Mutsuyoshi,  E., 1978, “Invariant Zeros and Input-Output Structure of Linear, Time-Invariant Systems,” Int. J. Control, 28(4), pp. 525–535.
Suda, N., 1993, Linear Systems Theory (in Japanese). Asakura, Tokyo.


Grahic Jump Location
A 3-mode 2-input 2-output mass-damper-spring system
Grahic Jump Location
Zeros of the discrete-time system




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In