0
TECHNICAL PAPERS

A New Robust Sliding-Mode Observer Design for Monitoring in Chemical Reactors

[+] Author and Article Information
Rafael Martı́nez-Guerra, Alexander Poznyak

Departamento de Control Automático, CINVESTAV-IPN, Apdo. Postal 14-740, C.P. 07360, Mexico, D.F. Mexico

Ricardo Aguilar

Departamento de Energı́a Universidad Autónoma Metropolitana—Azcapotzalco, Apartado Postal 75-338, C.P. 07300, México, D.F. Mexico

J. Dyn. Sys., Meas., Control 126(3), 473-478 (Dec 03, 2004) (6 pages) doi:10.1115/1.1789534 History: Received November 19, 2003; Online December 03, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ljung, L., 1999, “System for Identification. Theory for the Users,” Second Edition, Prentice Hall PTR, Upper Saddle River, NJ 07458.
Alvarez Ramı́rez, J., and Martı́nez-Guerra, R., 1993, “Practical Stabilization of a Class of Uncertain Chemical Reactors,” Proc. 32nd. IEEE Conference on Decision and Control (CDC) San Antonio, Texas, U.S.A., pp. 3877–3878.
Soroush,  M., 1997, “Nonlinear state observer design with application to reactors,” Chem. Eng. Sci., 52(3), pp. 387–404.
Schuler,  H., and Schmidt,  C., 1992, “Calorimetric-state estimator for chemical reactors diagnosis and control: Review of methods and applications,” Chem. Eng. Sci., 47, pp. 899–908.
Krener,  A. J., and Isidori,  A., 1983, “Linearization by output injection and nonlinear observers,” Systems & Control Letters, 3, pp. 47–54.
Elicabe,  G. E., Ozdeger,  E., and Georgakis,  C., 1995, “On line estimation of reaction rate in a polymerization process,” Ind. Eng. Chem. Res., 34, pp. 1219–1227.
Fliess, M., and Hasler, M., 1990, “Questioning the classical state-space description via circuit example,” Birkhauser, Boston, MA: Mathematical Theory of networks and systems, MTNS-89, Kaashoek MA, Ram ACM, van Shuppen JH (Eds.). Progress in Systems and Control. Boston: Birkhäuser.
Freedman,  M. I., and Willems,  J. C., 1978, “Smooth representation of systems with differentiated inputs,” IEEE Transc. Aut. Contr., 23, pp. 16–21.
Hasler, M., and Neirynck, J., 1986, “Nonlinear Circuits,” Boston, MA: Artech House.
Martı́nez-Guerra,  R., and De León-Morales,  J., 1996, “Nonlinear estimators: a differential algebraic approach,” Appl. Math. Lett., 9, pp. 21–25.
Martı́nez-Guerra,  R., Suarez,  R., and De León-Morales,  J., 2001, “Asymptotic tracking of a class of nonlinear systems by means of an observer,” International Journal of Robust and Nonlinear Control, 11, pp. 373–391.
Martı́nez-Guerra,  R., and De León-Morales,  J., 1994, “Observers for a multi-input multi-output bilinear systems class:a differential algebraic approach,” Journal of Mathematics and Computer Modelling, 20, pp. 125–132.
Slotine,  J., Hedricks,  J., and Misawa,  E., 1987, “On sliding observers for nonlinear systems,” J. Dyn. Meas. & Control., 109, pp. 245–252.
Aguilar,  R., Poznyak,  A., Martinez-Guerra,  R., and Maya-Yescas,  R., 2002, “Temperature control in catalytic cracking reactors via a robust PID controller,” Journal of Process Control, 12, pp. 695–705.
Fliess,  M., 1990, “Generalized controller canonical forms for linear and nonlinear dynamics,” IEEE Transc. Aut. Contr., 35, pp. 994–1001.
Ritt, J. F., 1932, “Differential equations from the algebraic standpoint,” New York: American Mathematics Society.
Diop, S., and Fliess, M., 1991, “On nonlinear observability,” Proceedings of the First European Control Conference, Paris Hermes, pp. 152–157.
Martı́nez-Guerra,  R., Poznyak,  A., Gortcheva,  E., and Dı́az-De León,  V., 2000, “Robot angular link velocity estimation in presence of high level mixed uncertainties,” International Journal IEE Proce. on Control Theory and Applications, 147(5), pp. 515–522.
Utkin, V. I. 1978, “Sliding modes and their applications in variable structure systems,” MIR, Moscow.
Drakunov,  S. V., 1984, “Adaptive quasi-optimal filters with discontinuous parameters,” Automation and Remote Control, 44(9), pp. 1167–1175.
Drakunov, S. V., and Utkin, V., 1995, “Sliding mode observers, Tutorial,” Proc. 34th IEEE Conference on Decision and Control (CDC), Dec. 13–15, New Orleans, LA, pp. 3376–3378.
De Carlo R., Zak, S., and Drakunov, S., 1996, “Variable structure and sliding mode control,” Chapter in the Control Handbook a volume in the Electrical Engineering Handbook Series, CRC Press, Inc.,
Anulova,  S. V., 1986, “Random Disturbances of the Operation of Control Systems in the Sliding Mode,” Automation and Remote Control, 47(4), Part I, pp. 474–479.
Poznyak, A. S., Sanchez N. N., and Wen Yu, 2001, “Differential Neural Networks for Robust Nonlinear Control: Identification, State estimation and Trajectory Tracking,” World Scientific Publisher, New Jersey-London-Singapore-Hong Kong.

Figures

Grahic Jump Location
On-line estimation of the heat of reaction with the sustained disturbances (m=0.00001).
Grahic Jump Location
Filtering process of the reactor temperature measurements with the sustained disturbances (m=0.00001).
Grahic Jump Location
Filtering process of the measurements of reactor temperature (m=0.001).
Grahic Jump Location
On-line estimation of the heat of reaction (m=0.001).
Grahic Jump Location
Filtering process of the measurements of reactor temperature (m=0.1).
Grahic Jump Location
On-line estimation of the heat of reaction (m=0.1).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In