0
TECHNICAL PAPERS

Feedback Control of Thermal Systems Modeled via the Network Approach

[+] Author and Article Information
Miltiadis V. Papalexandris

Département de Mécanique, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium

J. Dyn. Sys., Meas., Control 126(3), 509-519 (Dec 03, 2004) (11 pages) doi:10.1115/1.1789537 History: Received December 15, 2003; Online December 03, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Welty, J. R., 1974, Engineering Heat Transfer, John Wiley, New York.
Brenan, K. E., Campbell, S. L., and Petzold, L. R., 1996, Numerical Solution of Initial-Value Problems in Differential Algebraic Equations, SIAM, Philadelphia PA.
Campbell, S. L., 1980, Singular Systems of Differential Equations, Research Notes in Mathematics, Vol. 40 , Pitman, San Francisco, CA.
Campbell, S. L., 1982, Singular Systems of Differential Equations, II, Research Notes in Mathematics, Vol. 60 , Pitman, San Francisco, CA.
Dai, L., 1989, Singular Control Systems, Springer, Berlin.
Lewis,  F. L., 1986, “A Survey of Linear Singular Systems,” Circuits Syst. Signal Process., 5, pp. 3–36.
Verghese,  G. C., Levy,  B. C., and Kailath,  T., 1981, “A Generalized State-Space for Singular Systems,” IEEE Trans. Autom. Control, AC-26, pp. 811–831.
Papalexandris,  M. V., and Milman,  M. H., 2001, “Active Control and Parameter Updating Techniques for Nonlinear Thermal Network Models,” Comput. Mech., 27, pp. 11–22.
Papalexandris,  M. V., Milman,  M. H., and Levine,  M., 2002, “Nodal Temperature Estimation Algorithms for Nonlinear Thermal Network Models,” AIAA J., 40, pp. 1451–1461.
Bender,  D. L., and Laub,  A. J., 1987, “The Linear-Quadratic Optimal Regulator for Descriptor Systems,” IEEE Trans. Autom. Control, AC-32, pp. 672–688.
Varga, R. S., 1961, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ.
Milman,  M. H., and Petrick,  W., 2002, “A Note on the Solution to a Common Thermal Network Problem Encountered in Heat Transfer Analysis of Spacecraft,” Appl. Math. Modeling, 24, pp. 861–879.
Cobb,  D. J., 1984, “Controllability, Observability, and Duality in Singular Systems,” IEEE Trans. Autom. Control, AC-29, pp. 1076–1082.
Kwakernaak, H., and Sivan, R., 1972, Linear Optimal Control Systems, Wiley Interscience, New York.
Anderson, B. D. O., and Moore, J. B., 1971, Linear Optimal Control, Prentice-Hall, Englewood Cliffs, NJ.
Jonckheere,  E. A., 1988, “Variational Calculus for Descriptor Problems,” IEEE Trans. Autom. Control, AC-33, pp. 491–495.
Morari, M., and Zafiriou, E., 1989, Robust Process Control Systems, Prentice-Hall, Englewood Cliffs, NJ.
Bryant, G. F., and Yeung, L., 1996, Multivariable Control System Design Techniques: Dominance and Direct Methods, John Wiley, England.
Skogestad,  S., and Morari,  M., 1992, “Variable Selection for Decentralized Control,” Modeling, Identification Control, 13, pp. 113–125.
Campo,  P. G., and Morari,  M., 1994, “Achievable closed-loop properties of systems under decentralized control: conditions involving the steady-state gain,” IEEE Trans. Autom. Control, AC-39, pp. 932–943.
Bao,  J., McLellan,  B. J., and Fraser Forbes,  J., 2002, “A Passivity-Based Analysis for Decentralized Integral Controllability,” Automatica, 38, pp. 243–247.
Lee,  J., and Edgar,  T. F., 2002, “Conditions for Decentralized Integral Controllability,” J. Process Control, 12, pp. 797–805.
Samyudia,  Y., Lee,  P. L., and Cameron,  I. T., 1995, “A New Approach to Decentralized Control Design,” Chem. Eng. Sci., 50, pp. 1695–1706.
Petzold, L. R., 1983, “A Description of DASSL: A Differential/Algebraic System Solver,” Scientific Computing (Stepleman, R. S., et al., ed.), North-Holland, Amsterdam, pp. 65–68.
Berman, A., and Plemmons, R. J., 1977, Non-Negative Matrices in the Mathematical Sciences, Academic, San Diego, CA.

Figures

Grahic Jump Location
Thermal response of the r-set of nodes without control
Grahic Jump Location
Thermal response of the r-set of nodes with optimal control, cf. Eq. (35)
Grahic Jump Location
Energy output of each controller with optimal control
Grahic Jump Location
Thermal response of the r-set of nodes with decentralized control, cf. Eq. (62)
Grahic Jump Location
Energy output of each controller with decentralized control

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In