Wu, H., 1978, “A review of porous squeeze films,” Wear

[CrossRef], 47 (2), pp. 371–385.

Ting, L. L., 1975, “Engagement Behavior of Lubricated Porous Annular Disks,” Wear

[CrossRef], 34 (2), pp. 159–182.

Berger, E. J., Sadeghi, F., and Krousgrill, C. M., 1997, “Analytical and Numerical Modeling of Engagement of Rough, Permeable, Grooved Wet Clutches,” ASME J. Tribol., 119 (1), pp. 143–148.

Fanella, R., 1994, “Design of Friction Clutches,” "*Design Practices-Passenger Car Automatic Transmissions*", 3rd ed., (Soc. Automotive Eng., New York).

Husselbee, W. L., 1986, "*Automatic Transmission Fundamentals and Service*", Prentice Hall, New Jersey.

Fanella, R., 1994, “Design of Bands,” "*Design Practices-Passenger Car Automatic Transmissions*", 3rd ed. (Soc. Automotive Eng., New York).

Kato, Y., and Shibayama, T., 1994, “Mechanisms of Automatic Transmissions and Their Requirements for Wet Clutches and Wet Brakes,” Jpn. J. Tribol., 39 (12), pp. 1427–1437.

Wu, H., 1970, “Squeeze Film Behavior for Porous Annular Disks,” ASME J. Lubr. Technol., 92 , pp. 593–596.

Wu, H., 1971, “The Squeeze Film between Rotating Porous Annular Plates,” Wear, 18 (6), pp. 461–470.

Wu, H., 1973, “An Analysis of the Engagement of Wet-clutch Plates,” Wear

[CrossRef], 24 (1), pp. 23–33.

Patir, N., and Cheng, H. S., 1978, “An Average Flow Model for Determining Effects of Three-dimensional Roughness on Partial Hydrodynamic Lubrication,” ASME J. Lubr. Technol., 100 (1), pp. 12–17.

Natsumeda, S., and Miyoshi, T., 1994, “Numerical Simulation of Engagement of Paper Based Wet Clutch Facing,” ASME J. Tribol., 116 , No. 2, pp. 232–237.

Jacobson, B., 1992, “Engagement of oil immersed multi-disc clutches,” ASME International Power Transmission and Gearing Conference , DE-43-2, pp. 567–574.

Yang, Y., Lam, R. C., Chen, Y. F., and Yabe, H., 1995, “Modeling of Heat Transfer and Fluid Hydrodynamics for a Multidisc Wet Clutch,” SAE Special Publication-Paper 950898.

Fujii, Y., Tobler, W. E., and Snyder, T. D., 2001, “Prediction of Wet Band Brake Dynamic Engagement Behavior Part 1: Mathematical Model Development,” Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)

[CrossRef], 215 (D4), pp. 479–492.

Fujii, Y., Tobler, W. E., and Snyder, T. D., 2001, “Prediction of Wet Band Brake Dynamic Engagement Behavior Part 2: Experimental Model Validation,” Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)

[CrossRef], 215 (D5), pp. 603–611.

Fujii, Y., Tobler, W., Pietron, G., Cao, M., and Wang, K. W., 2003, “Review of Wet Friction Component Models for Automatic Transmission Shift Analysis,” SAE paper No.2003-01-1665.

Cybenko, G., 1989, “Approximation by Superpositions of a Sigmoidal Function,” Math. Control, Signals, Syst.

[CrossRef], 2 (4), pp. 303–314.

Hornik, K., Stinchcombe, M., and White, H., 1989, “Multilayer Feedforward Networks are Universal Approximators,” Neural Networks

[CrossRef], 2 (5), pp. 359–366.

Sato, M., and Murakami, Y., 1991, “Learning Nonlinear Dynamics by Recurrent Neural Networks,” "*Some Problems on the Theory of Dynamical Systems in Applied Sciences*", World Scientific Publishing, pp. 49–64.

Narendra, K. S., and Parthasarathy, K., 1990, “Identification and Control of Dynamical Systems Using Neural Networks,” IEEE Trans. Neural Netw.

[CrossRef], 1 (1), pp. 4–27.

Parlos, A. G., Atiya, A. F., Chong, K. T., and Tsai, W. K., 1992, “Nonlinear Identification of Process Dynamics Using Neural Networks,” Nucl. Technol., 97 (1), pp. 79–96.

Cao, M., Wang, K. W., DeVries, L., Fujii, Y., Tobler, W. E., Pietron, G. M., Tibbles, T., and McCallum, J., 2004, “Steady State Hydraulic Valve Fluid Field Estimator Based on Non-dimensional Artificial Neural Network,” ASME J. Comput. Inf. Sci. Eng.

[CrossRef], 4 (3), pp. 257–270.

Pao, Y. H., 1989, "*Adaptive Pattern Recognition and Neural Network*", Addison-Wesley, Reading, MA.

Qi, Haiyu, Zhou, Xing-Gui, Liu, Liang-Hong, Yuan, and Wei-Kang, 1999, “A Hybrid Neural Network-first Principles Model for Fixed-bed Reactor,” Chem. Eng. Sci., 54 (13–14), pp. 2521–2526.

Parvataneni, V., 1998, “A First Principle-based Hybrid Neural Network Clutch Dynamics Model,” M.S. Thesis in Mechanical Engineering, the Pennsylvania State University.

Parvateneni, V., Cao, M., Wang, K. W., Fujii, Y., and Tobler, W. E., 1999, “Hybrid Neural Network for Modeling Automotive Clutches,” Proc. ASME Dynamic Systems and Control Divison , DSC-67, pp. 255–263.

Cao, M., Wang, K. W., Fujii, Y., and Tobler, W. E., 2004, “A Hybrid Neural Network Approach for the Development of Friction Component Dynamic Model,” ASME J. Dyn. Syst., Meas., Control

[CrossRef], 126 (1), pp. 144–153.

Cao, M., Wang, K. W., Fujii, Y., and Tobler, W. E., 2004, “Advanced Hybrid Neural Network (AHNN) Automotive Friction Component Model for Powertrain System Dynamic Analysis, Part 1: Model Development,” Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.), 218 , pp. 831–843.

Cao, M., Wang, K. W., Fujii, Y., and Tobler, W. E., 2004, “Advanced Hybrid Neural Network (AHNN) Automotive Friction Component Model for Powertrain System Dynamic Analysis, Part 2: System Simulation,” Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.), 218 , pp. 845–857.

Psaltis, D., Sideris, A., and Yamamura, A. A., 1988, “A Multi-layered Neural Network Controller,” IEEE Control Syst. Mag.

[CrossRef], 8 (1), pp. 17–21.

Chen, Lingji, and Narendra, K. S., 2003, “Intelligent Control Using Multiple Neural Networks,” Int. J. Adapt. Control Signal Process., 17 (6), pp. 417–430.

Levin, A. U., and Narendra, K. S., 1993, “Control of Nonlinear Dynamical Systems Using Neural Networks: Controllability and Stabilization,” IEEE Trans. Neural Netw.

[CrossRef], 4 (2), pp. 192–206.

Jordan, M. I., and Rumelhart, D. E., 1991, “Forward Models: Supervised Learning with a Distal Teacher,” Occasional Paper #40 , Center for Cognitive Science, MIT, 49 pages.

Cao, M., 2001, “Grey Box Neural Network and Its Application to System Modeling,” M.S. thesis in Electrical Engineering, The Pennsylvania State University.

Nahas, E. P., Henson, M. A., and Seboro, D. E., 1992, “Nonlinear Internal Model Control Strategy for Neural Network Models,” Comput. Chem. Eng.

[CrossRef], 16 (2), pp. 1039–1057.

Hunt, K. J., and Sbarbaro, D., 1991, “Neural Networks for Nonlinear Internal Model Control,” IEE Proc.-D: Control Theory Appl., 138 (5), pp. 431–438.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1986, "*Numerical Recipes: The Art of Scientific Computing*", Cambridge University Press, Cambridge, England.

Fujii, Y., Tobler, W. E., Clausing, E. M., Megli, T. W., and Haghgooie, M., 2002, “Application of Dynamic Band Brake Model for Enhanced Drivetrain Simulation,” Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)

[CrossRef], 216 (D11), pp. 873–881.

Greenwood, J. A., and Williamson, J. B. P., 1966, “Contact of nominally flat surfaces,” Proc. R. Soc. London, Ser. A, A295 , pp. 300–319.