Christenson, W. A., 2000, “Using CAE Simulation Tools to Study the Performance of a Two-Stage Variable Force Solenoid Acting on a Clutch,” SAE Technical Paper Series, 2000-01-0116.

Merritt, H. E., 1967, "*Hydraulic Control Systems*", Wiley, New York.

Miller, R. H., Fujii, Y., McCallum, J., Strumolo, G., Tobler, W. E., and Pritts, C., 1999, “CFD Simulation of Steady-State Flow Forces on Spool-Type Hydraulic Valves,” SAE 1999-01-1058.

DeVries, L., 2003, “Automotive Transmission Spool Valve Test Stand Development for Axial Flow Force Modeling,” M.S. thesis in Mechanical Engineering, Pennsylvania State University, University Park, PA.

Cao, M., Wang, K. W., DeVries, L., Fujii, Y., Tobler, W. E., Pietron, G. M., Tibbles, T., and McCallum, J., 2003, “Automotive Hydraulic Valve Fluid Field Estimator Based on Nondimensional Artificial Neural Network (NDANN),” "*Advances in Vehicle Modeling, Simulation, Dynamics and Control, 2003 ASME International Mechanical Engineering Congress*", Washington, D.C., paper IMECE2003–42523.

Funahashi, K., and Nakamura, Y., 1993, “Approximation of Dynamical Systems by Continuous Time Recurrent Neural Networks,” Neural Networks

[CrossRef], 6 (6), pp. 801–806.

El-Gindy, M., and Palkovics, L., 1993, “Possible Application of Artificial Neural Networks to Vehicle Dynamics and Control: A Literature Review,” Int. J. Veh. Des., 14 (5–6), pp. 592–614.

Cao, M., Wang, K. W., Fujii, Y., and Tobler, W. E., 2005, “Development of a Friction Component Model for Automotive Powertrain System Analysis and Shift Controller Design Based on Parallel-Modulated Neural Networks,” ASME J. Dyn. Syst., Meas., Control

[CrossRef], 127 (3), pp. 382–405.

Cao, M., Wang, K. W., Fujii, Y., and Tobler, W. E., 2004, “Advanced Hybrid Neural Network (AHNN) Automotive Friction Component Model for Powertrain System Dynamic Analysis, Part 1: Model Development,” Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)

[CrossRef], 218 (8), pp. 831–843.

Cao, M., Wang, K. W., Fujii, Y., and Tobler, W. E., 2004, “Advanced Hybrid Neural Network (AHNN) Automotive Friction Component Model for Powertrain System Dynamic Analysis, Part 2: System Simulation,” Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)

[CrossRef], 218 (8), pp. 845–857.

Cao, M., Wang, K. W., Fujii, Y., and Tobler, W. E., 2004, “A Hybrid Neural Network Approach for the Development of Friction Component Dynamic Model,” ASME J. Dyn. Syst., Meas., Control

[CrossRef], 126 (1), pp. 144–153.

Tsutsumi, A., Chen, W., Hasegawa, T., and Otawara, K., 2001, “Neural Networks for Prediction of the Dynamic Heat-Transfer Rate in Bubble Columns,” Ind. Eng. Chem. Res., 40 (23), pp. 5358–5361.

Faller, W. E., Schreck, S. J., and Helin, H. E., 1995, “Real-Time Model of Three-Dimensional Dynamic Reattachment Using Neural Networks,” J. Aircr., 32 (6), pp. 1177–1182.

Faller, W. E., and Schreck, S. J., 1997, “Unsteady Fluid Mechanics Applications of Neural Networks,” J. Aircr., 34 (1), pp. 48–55.

Benning, R. M., Becker, T. M., and Delgado, A., 2001, “Initial Studies of Predicting Flow Fields with an ANN Hybrid,” Adv. Eng. Software

[CrossRef], 32 (12), pp. 895–901.

Bardina, J., and Rajkumar, T., 2003, “Training Data Requirement for a Neural Network to Predict Aerodynamic Coefficients,” Proc. SPIE, 5102 , pp. 92–103.

Cerri, G., Michelassi, V., Monacchia, S., and Pica, S., 2003, “Kinetic Combustion Neural Modeling Integrated Into Computational Fluid Dynamics,” Proc. Inst. Mech. Eng., Part A, 217 (2), pp. 185–192.

Cao, M., Wang, K. W., DeVries, L., Fujii, Y., Tobler, W. E., Pietron, G. M., Tibbles, T., and McCallum, J., 2004, “Steady-State Hydraulic Valve Fluid Field Estimator Based on Nondimensional Artificial Neural Network (NDANN),” ASME J. Comput. Inf. Sci. Eng.

[CrossRef], 4 (3), pp. 257–270.

Mises, V., 1917, “Berechnung von Ausfluss—und Uberfallzahlen (Calculation of Discharge and Weir Coefficients),” Z. Vereines Deutscher Ingenieure, 61 , pp. 144–153.

Seppala, J., Koivisto, H., and Koivo, H., 1998, “Modeling Elevator Dynamics Using Neural Networks,” "*IEEE International Conference on Neural Networks—Conference Proceedings*", IEEE World Congress on Computational Intelligence , IEEE, New York, Vol. 3 , pp. 2419–2424.

Zorzetto, L. F. M., Filho, R. Maciel, and Wolf-Maciel, M. R., 2000, “Process Modeling Development through Artificial Neural Networks and Hybrid Models,” Comput. Chem. Eng., 24 (2), pp. 1355–1360.

Rivera-Sampayo, R., and Velez-Reyes, M., 2001, “Gray-Box Modeling of Electric Drive Systems Using Neural Networks,” "*Proceedings of the 2001 IEEE International Conference on Control Applications CCA “01*", pp. 146–151, Mexico City.

Oussar, Y., and Dreyfus, G., 2001, “How to Be a Gray Box: Dynamic Semiphysical Modeling,” Neural Networks, 14 (9), pp. 1161–1172.

Karam, M., and Zohdy, M. A., 2001, “Nonlinear Model-Based Dynamic Recurrent Neural Network,” "*Midwest Symposium on Circuits and Systems*", Vol. 2 , pp. 624–626.

Braun, J. E., and Chaturvedi, N., 2002, “An Inverse Gray-Box Model for Transient Building Load Prediction,” HVAC&R Res., 8 (1), pp. 73–99.

Xiong, Q., and Jutan, A., 2002, “Grey-Box Modeling and Control of Chemical Processes,” Chem. Eng. Sci., 57 (6), pp. 1027–1039.