Insperger, T., Mann, B. P., Stépán, G., and Bayly, P. V., 2003, “Stability of Up-Milling and Down-Milling, Part 1. Alternative Analytal Methods,” Int. J. Mach. Tools Manuf.

[CrossRef], 43 , pp. 25–34.

Mann, B. P., Insperger, T., Bayly, P. V., and Stépán, G., 2003, “Stability of Up-Milling and Down-Milling, Part 2: Experimental Verification,” Int. J. Mach. Tools Manuf.

[CrossRef], 43 , pp. 35–40.

Altintas, Y., and Budak, E., 1995, “Analytical Prediction of Stability Lobes in Milling,” CIRP Ann., 44 (1), pp. 357–362.

Mann, B. P., Garg, N. K., Young, K. A., and Helvey, A. M., 2005, “Milling Bifurcations From Structural Asymmetry and Nonlinear Regeneration,” Nonlinear Dyn.

[CrossRef], 42 (4), Dec, pp. 319–337.

Balachandran, B., 2001, “Nonlinear Dynamics of Milling Process,” Proc. R. Soc. London, Ser. A, 359 , pp. 793–819.

Yang, B., and Wu, X., 1998, “Modal Expansion of Structural Systems With Time Delays,” AIAA J., 36 (12), pp. 2218–2224.

Yakubovitch, V. A., and Starzhinskii, V. M., 1975, "*Linear Differential Equations With Periodic Coefficients*", Wiley, New York.

Lindh, K. G., and Likins, P. W., 1970, “Infinite Determinant Methods for Stability Analysis of Periodic-Coefficient Differential Equations,” AIAA J., 8 , pp. 680–686.

Brockett, R. W., 1970, "*Finite Dimensional Linear Systems*", John Wiley, New York.

Peters, D. A., and Hohenemser, K. H., 1971, “Application of Floquet Transition Matrix to Problems of Lifting Rotor Stability,” J. Am. Helicopter Soc., 16 , pp. 25–33.

Hsu, C. S., and Cheng, W. H., 1973, “Application of the Theory of Impulsive Parametric Excitation and New Treatment of General Parametric Excitation Problems,” ASME J. Appl. Mech., 40 , pp. 78–86.

Hsu, C. S., 1974, “On Approximating a General Linear Periodic System,” J. Math. Anal. Appl.

[CrossRef], 45 , pp. 234–251.

Sinha, S. C., Chou, C. C., and Denman, H. H., 1979, “Stability Analysis of Systems With Periodic Coefficients: An Approximate Approach,” J. Sound Vib.

[CrossRef], 64 , pp. 515–527.

Friedmann, P., Hammond, C. C., and Woo, T. H., 1977, “Efficient Numerical Treatment of Periodic Systems With Applications to Stability Problems,” Int. J. Numer. Methods Eng.

[CrossRef], 11 , pp. 1117–1136.

Gockel, M. A., 1972, “Practical Solution of Linear Equations With Periodic Coefficients,” J. Am. Helicopter Soc., 17 , pp. 2–10.

Gaonkar, G. H., Prasad, D. S. S., and Sastry, D., 1981, “On Computing Floquet Transition Matrices of Rotocraft,” J. Am. Helicopter Soc., 26 , pp. 56–61.

Nayfeh, A. H., 1973, "*Perturbation Methods*", Wiley, New York.

Jordan, D. W., and Smith, P., 1977, "*Nonlinear Ordinary Differential Equations*", Clarendon Press, Oxford.

Sinha, S. C., and Wu, D. H., 1991, “An Efficient Computational Scheme for Analysis of Periodic Systems,” J. Sound Vib.

[CrossRef], 151 (1), pp. 91–117.

Sinha, S. C., 1997, “On the Analysis of Time-Periodic Nonlinear Dynamical Systems,” Sadhana: Proc., Indian Acad. Sci., 22 (3), pp. 411–434.

Sinha, S. C., Pandiyan, R., and Bibb, J. S., 1996, “Liapunov-Floquet Transformation: Computation and Applications to Periodic Systems,” ASME J. Vibr. Acoust., 118 , pp. 209–219.

Sinha, S. C., Wu, D. H., Juneja, V., and Joseph, P., 1991, “An Approximate Analytical Solution for Systems With Periodic Coefficients via Symbolic Computation,” AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics and Materials Conference, April, pp. 790–797.

Joseph, P., Pandiyan, R., and Sinha, S. C., 1993, “Optimal Control of Mechanical Systems Subjected to Periodic Loading via Chebyshev Polynomials,” Opt. Control Appl. Methods, 14 , pp. 75–90.

Butcher, E. L., Ma, H., Bueler, E., Averina, V., and Szabo, Z., 2004, “Stability of Linear Time-Periodic Delay-Differential Equations via Chebyshev Polynomials,” Int. J. Numer. Methods Eng.

[CrossRef], 59 (7), pp. 895–922.

Ma, H., Deshmukh, V., Butcher, E. A., and Averina, V., 2005, “Delayed State Feedback and Chaos Control for Time-Periodic Systems via a Symbolic Approach,” Commun. Nonlinear Sci. Numer. Simul., 10 , pp. 467–580.

Ma, H., Butcher, E. A., and Bueler, E., 2003, “Chebyshev Expansion of Linear and Peicewise Linear Dynamic Systems With Time Delay and Periodic Coefficients Under Control Excitations,” ASME J. Dyn. Syst., Meas., Control

[CrossRef], 125 , pp. 236–243.

Bueler, E., Averina, V., and Butcher, E. A., 2004, “Periodic Linear DDEs: Collocation Approximation to the Monodromy Operator,” SIAM Annual Meeting, Portland, Oregan.

Szabo, S., and Butcher, E. A., 2002, “Stability Analysis of Delayed 2nd Order Odes Based on the Method of Chebyshev Polynomials,” European Conference on Numerical Methods of Computational Mechanics, July 15–19, Miskolc, Hungary.

Horng, I. R., and Chou, J. H., 1985, “Analysis Parameter Estimation and Optimal Control of Time-Delay Systems via Chebyshev Series,” Int. J. Control, 41 , pp. 1221–1234.

Chung, H. Y., and Sun, Y. Y., 1987, “Analysis of Time-Delay Systems Using an Alternative Technique,” Int. J. Control, 46 , pp. 1621–1631.

Mathieu, E., 1868, “Memoire sur le Mouvement Vibratorie d’une Membrane de Forme Elliptique,” J. Math, 13 , pp. 137–203.

Bellman, R., and Cooke, K., 1963, "*Differential-Difference Equations*", Academic Press, New York.

Bhatt, S. J., and Hsu, C. S., 1966, “Stability Criteria for Second-Order Dynamical Systems With Time Lag,” Appl. Math. (Germany), 33 , pp. 113–118.

Niemark, J., 1949, “D-Subdivision and Spaces of Quasi-Polynomials,” Prikl. Mat. Mekh., 13 , pp. 349–380 (in Russian).

Andreev, A. F., 1958, “Twelve Papers on Function Theory, Probability and Differential Equations,” American Mathematical Society, Series 2, Volume 8.

Insperger, T., and Stépán, G., 2002, “Stability Chart of the Delayed Mathieu Equation,” Proc. R. Soc. London, Ser. A

[CrossRef], 458 , pp. 1989–1998.

Insperger, T., and Stépán, G., 2001, “Semi-Discretization of Delayed Dynamical Systems,” "*Proc. of ASME 2001 Design Engineering Technical Conferences and Computers and Information in Engineering Conference*", Pittsburgh, ASME, New York.

Insperger, T., and Stépán, G., 2002, “Semi-Discretization Method for Delayed Systems,” Int. J. Numer. Methods Eng.

[CrossRef], 55 (5), pp. 503–518.

Chang, P. Y., Yang, S. Y., and Wang, M. L., 1986, “Solution of Linear Dynamic Systems by Generalized Orthogonal Polynomials,” Int. J. Syst. Sci., 17 , pp. 1727–1740.

Sinha, S. C., and Chou, C. C., 1976, “An Approximate Analysis of Transient Response of Time Dependent Linear Systems by Orthogonal Polynomials,” J. Sound Vib.

[CrossRef], 49 , pp. 309–326.

Lindlbauer, M., 1998, “On the Rate of Convergence of the Laws of Markov Chains Associated With Orthogonal Polynomials,” J. Comput. Appl. Math.

[CrossRef], 99 , pp. 287–297.

Halley, J. E., 1999, “Stability of Low Radial Immersion Milling,” Master’s thesis, Washigton University, Saint Louis.

Bayly, P. V., Halley, J. E., Mann, B. P., and Davis, M. A., 2003, “Stability of Interrupted Cutting by Temporal Finite Element Analysis,” ASME J. Manuf. Sci. Eng.

[CrossRef], 125 , pp. 220–225.

Mann, B. P., 2003, “Dynamic Models of Milling and Broaching,” Ph.D. dissertation, Washington University, Saint Louis, May.

Mann, B. P., Bayly, P. V., Davies, M. A., and Halley, J. E., 2004, “Limit Cycles, Bifurcations, and the Accuracy of the Milling Process,” J. Sound Vib.

[CrossRef], 277 , pp. 31–48.

Mann, B. P., Young, K. A., Schmitz, T. L., and Dilley, D. N., 2005, “Simultaneous Stability and Surface Location Error Predictions in Milling,” ASME J. Manuf. Sci. Eng.

[CrossRef], 127 , pp. 446–453.

Nayfeh, A. H., and Balachandran, B., 1995, "*Applied Non-linear Dynamics Analytical, Computational and Experimental Methods*", Wiley, New York, Wiley Series on Nonlinear Science.

Hale, J. K., and Lunel, S. V., 1993, "*Introduction to Functional Differential Equations*", Springer-Verlag, Berlin.

Hassard, B. D., 1997, “Counting Roots of the Characteristic Equation for Linear Delay-Differential Systems,” J. Differ. Equations

[CrossRef], 136 , pp. 222–235.

Mann, B. P., Garg, N. K., Young, K. A., and Helvey, A. M., 2005, “Milling Bifurcations From Structural Asymmetry and Nonlinear Regeneration,” Nonlinear Dyn.

[CrossRef], 42 (4), pp. 319–337.

Zienkiewicz, O. C., and Taylor, R. L., 2000, "*The Finite Element Method*", 5th ed., Butterworth Heinemann, Oxford, Vol. 1 .

Insperger, T., and Stépán, G., 2004, “Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay,” Int. J. Numer. Methods Eng.

[CrossRef], 61 , pp. 117–141.

Burnett, D. S., 1988, "*Finite Element Analysis (From Concepts to Applications)*", 5th ed., Addison-Wesley, Reading, MA.

Zienkiewicz, O. C., Zhu, J. Z., and Gong, N. G., 1989, “Effective and Practical h-p Version Adaptive Analysis Procedures for the Finite Element Method,” Int. J. Numer. Methods Eng.

[CrossRef], 28 , pp. 879–891.