Podlubny, I., 1999, Fractional-Order Systems and PIλDμ-Controllers,” IEEE Trans. Autom. Control
[CrossRef], 44 (1), pp. 208–214.
Podlubny, I., 1999, "Fractional Differential Equations", Academic Press, New York.
Wang, J. C., 1987, “Realization of Generalized Warburg Impedance With RC Ladder and Transmission Lines,” J. Electrochem. Soc.
[CrossRef], 134 (8), pp. 1915–1940.
Keshner, M. S., 1982, “1/f noise,” Proc. IEEE, 70 (3), pp. 212–218.
Mandelbrot, B., 1967, “Some Noises With 1/f Spectrum: A Bridge Between Direct Current and White Noise,” IEEE Trans. Inf. Theory
[CrossRef], IT-13 (2), pp. 289–298.
Onaral, B., and Schwan, H. P., 1982, “Linear and Nonlinear Properties of Platinum Electrode Polarization, Part I: Frequency Dependence at Very Low Frequencies,” Med. Biol. Eng. Comput.
[CrossRef], 20 , pp. 299–306.
Le Mehauté, A., 1991, "Fractal Geometries", CRC Press, Boca Raton.
Bode, H. W., 1945, "Network Analysis and Feedback Design", Van Nostrand, New York.
Manabe, S., 1961, “The Non-Integer Integral and Its Application to Control Systems,” ETJ Jpn., 3-4 (6), pp. 83–87.
Manabe, S., 2003, “Early Development of Fractional Order Control,” "Proc. of DETC’03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference", ASME, New York, ASME Paper No. DETC2003/VIB-48370, Chicago, Sept. 2–6.
Oustaloup, A., Moreau, X., and Nouillant, M., 1996, “The CRONE Suspension,” Control Eng. Pract.
[CrossRef], 4 (8), pp. 1101–1108.
Oustaloup, A., Mathieu, B., and Lanusse, P., 1995, “The CRONE Control of Resonant Plants: Application to a Flexible Transmission,” Eur. J. Control, 1 (2), pp. 113–121.
Lanusse, P., Pommier, V., and Oustaloup, A., 2000, “Fractional Control System Design for a Hydraulic Actuator,” "Proc. of 1st IFAC Conference on Mechatronics Systems, Mechatronic 2000", Darmstadt, Sept.
Lurie, B. J., 1994, “Three-Parameter Tunable Tilt-Integral-Derivative (TID) Controller,” U.S. Patent No.US5371670.
Oustaloup, A., and Mathieu, B., 1999, "La Commande CRONE: Du Scalaire Aumultivariable", Hermes, Paris.
Podlubny, I., Petrás, I., Vinagare, B. M., O’Leary, P., and Dorcak, L., 2002, “Analogue Realization of Fractional-Order Controllers,” Nonlinear Dyn.
[CrossRef], 29 , pp. 281–296.
Vinagre, B. M., Petras, I., M.P., and Dorcak, L., 2001, “Two Digital Realization of Fractional Controllers: Application to Temperature Control of a Solid,” "Proc. of European Control Conference", Porto, Portugal, Sept., Laoisier, Cachan, pp. 1764–1767.
Vinagre, B. M., Podlubny, I., Hernandez, A., and Feliu, V., 2000, “On Realization of Fractional-Order Controllers,” "Proc. of Conference Internationale Fracophone d’Automatique", Lille, France, Vol. 7 , pp. 945–950.
Valério, D., and Sá da Costa, J., 2005, “Time-Domain Implementation of Fractional Order Controllers,” IEE Proc.: Control Theory Appl.
[CrossRef], 152 , pp. 539–552.
Horowitz, I. M., 1993, "Quantitative Feedback Design Theory (QFT)", QFT Publications, Boulder.
Hansen, E., 1992, "Global Optimization Using Interval Analysis", Marcel Dekker, New York.
Ratschek, H., and Rokne, J., 1988, "New Computer Methods for Global Optimization", Wiley, New York.
Ballance, D. J., and Gawthrop, P. J., 1991, “Control Systems Design Via a QFT Approach,” "Proc. of IEE Conference Control 91", Edinburgh, IEE Press, London, UK, Vol. 1 , pp. 476–481.
Bryant, G., and Halikias, G., 1995, “Optimal Loop-Shaping for Systems With Large Parameter Uncertainty via Linear Programming,” Int. J. Control, 62 (3), pp. 557–568.
Chait, Y., Chen, Q., and Hollot, C. V., 1999, “Automatic Loop-Shaping of QFT Controllers Via Linear Programming,” ASME J. Dyn. Syst., Meas., Control, 121 , pp. 351–357.
Gera, A., and Horowitz, I. M., 1980. “Optimization of the Loop Transfer Function,” Int. J. Control, 31 , pp. 389–398.
Thompson, D. F., and Nwokah, O. D. I., 1994, “Analytical Loop Shaping Methods in Quantitative Feedback Theory,” ASME J. Dyn. Syst., Meas., Control, 116 (2), pp. 169–177.
Chen, W., and Ballance, D. J., 1997, “Stability Analysis On the Nichols Chart and Its Application in QFT,” Technical Report No. CSC-98013, Center for Systems and Control, Department of Mechanical Engineering, University of Glasgow.
Nataraj, P. S. V., and Tharewal, S., “An Interval Analysis Algorithm for Automated Controller Synthesis in QFT Designs,” ASME J. Dyn. Syst., Meas., Control, to be published.
Borghesani, C., Chait, Y., and Yaniv, O., 1995, The QFT Frequency Domain Design Toolbox for Use With MATLAB®, The MathWorks, Inc., MA.
Chen, W., Ballance, D. J., and Li, Y., 1998, “Automatic Loop-Shaping in QFT Using Genetic Algorithms,” "Proc. of 3rd Asia-Pacific Conference on Control and Measurement", pp. 63–67.
Ismail, A., 2001, “Robust QFT-Based TBT Control of MSF desalination plants,” Desalination, 133 , pp. 105–121.