Horowitz, I. M., 1991, “Survey of Quantitative Feedback Theory,” Int. J. Control, 53 (2), pp. 255–291.

Horowitz, I. M., 1992, "*Quantitative Feedback Design Theory*", QFT Publications, Boulder, CO.

Brown, M., and Petersen, I. R., 1991, “Exact Computation of the Horowitz Bound for Interval Plants,” "*Proc. 30th IEEE Conf. Dec. Contr.*", Brighton, England, pp. 2268–2273.

Fialho, I. J., Pande, V., and Nataraj, P. S. V., 1992, “Design of Feedback Systems Using Kharitonov’s Segments in Quantitative Feedback Theory,” "*Proc. 1st QFT Symposium*", Dayton, Ohio, pp. 457–470.

Zhao, Y., and Jayasuriya, S., 1994, “On the Generation of QFT Bounds for General Interval Plants,” ASME J. Dyn. Syst., Meas., Control, 116 (4), pp. 618–627.

Longdon, L., and East, D. J., 1979, “A Simple Geometrical Technique for Determining Loop Frequency Response Bounds Which Achieve Prescribed Sensitivity Specifications,” Int. J. Control, 30 (1), pp. 153–158.

East, D. J., 1981, “A New Approach to Optimum Loop Synthesis,” Int. J. Control, 34 (4), pp. 731–748.

Wang, G. G., Chen, C. W., and Wang, S. H., 1991, “Equations for Loop Bound in Quantitative Feedback Theory,” "*Proc. 30th IEEE Conf. Dec. Contr.*", Brighton, England, pp. 2968–2969.

Chait, Y., and Yaniv, O., 1993, “Multi-input/Single-Output Computer-Aided Control Design Using the Quantitative Feedback Theory,” Int. J. Robust Nonlinear Control, 3 , pp. 47–54.

Yaniv, O., and Chait, Y., 1993, “Direct Control Design in Sampled-Data Uncertain Systems,” Automatica

[CrossRef], 29 (2), pp. 365–372.

Chait, Y., Borghesani, C., and Zheng, Y., 1995, “Single-Loop QFT Design for Robust Performance in the Presence of Non-Parametric Uncertainties,” ASME J. Dyn. Syst., Meas., Control, 117 (3), pp. 420–425.

Rodrigues, J. M., Chait, Y., and Hollot, C. V., 1997, “An Efficient Algorithm for Computing QFT Bounds,” ASME J. Dyn. Syst., Meas., Control, 119 (3), pp. 548–552.

Saff, E. B., and Snider, A. D., 1976, "*Fundamentals of Complex Analysis*", Prentice-Hall, NJ.

Bartlett, A. C., Hollot, C. V., and Huang, L., 1988, “Root Locations of an Entire Polytope of Polynomials: It Suffices to Check the Edges,” Math. Control, Signals, Syst., 1 (1), pp. 61–71.

Nataraj, P. S. V., and Sardar, G., 2000, “Computation of QFT Bounds for Robust Sensitivity and Gain-Phase Margin Specifications,” ASME J. Dyn. Syst., Meas., Control

[CrossRef], 122 (3), pp. 528–534.

Nataraj, P. S. V., 2002, “Computation of QFT Bounds for Robust Tracking Specifications,” Automatica, 38 (2), pp. 327–334.

Sardar, G., and Nataraj, P. S. V., 1997, “A Template Generation Algorithm for Nonrational Transfer Functions in QFT Designs,” "*Proc. 36th IEEE Conf. Dec. Contr.*", San Diego, pp. 2684–2689.

Nataraj, P. S. V., and Sardar, G., 2000, “Template Generation for Continuous Transfer Functions Using Interval Analysis,” Automatica

[CrossRef], 36 (1), pp. 111–119.

Gutman, P-O., Nordin, M., and Cohen, B., 2007, “Recursive Grid Methods to Compute Value Sets and Horowitz-Sidi Bounds,” Int. J. Robust Nonlinear Control

[CrossRef], 17 (2-3), pp. 155–171.

Bailey, F. N., Panzer, D., and Gu, G., 1988, “Two Algorithms for Frequency Domain Design of Robust Control Systems,” Int. J. Control, 48 (5), pp. 1787–1806.

Bailey, F. N., and Hui, C.-H., 1989, “A Fast Algorithm for Computing Parametric Rational Functions,” IEEE Trans. Autom. Control

[CrossRef], 34 (11), pp. 1209–1212.

Bartlett, A. C., 1990, “Nyquist, Bode, and Nichols Plots of Uncertain Systems,” "*Proc. American Contr. Conf.*", San Diego, pp. 2033–2036.

Fu, M., 1990, “Computing the Frequency Response of Linear Systems With Parametric Perturbation,” Syst. Control Lett.

[CrossRef], 15 (1), pp. 45–52.

Bartlett, A. C., 1993, “Computation of the Frequency Response of Systems With Uncertain Parameters: A Simplification,” Int. J. Control, 57 (6), pp. 1293–1309.

Chen, J.-J., and Chyi, H., 1998, “Computing Frequency Responses of Uncertain Systems,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 45 (3), pp. 304–307.

Shen, S.-K., Wang, B.-C., and Lee, T.-T., 1999, “An Improved Algorithm for Computing the Boundary of Parametric Rational Functions,” IEEE Trans. Autom. Control

[CrossRef], 44 (1), pp. 227–231.

Tan, N., and Atherton, D. P., 2000, “Frequency Response of Uncertain Systems: A 2q-Convex Parpolygonal Approach,” IEE Proc.: Control Theory Appl.

[CrossRef], 147 (5), pp. 547–555.

Jia, Y., 2002, “Computing the Frequency Response of Systems Affinely Depending on Uncertain Parameters,” IEE Proc.: Control Theory Appl., 149 (4), pp. 311–315.

Nishioka, K., Adachi, N., and Takeuchi, K., 1991, “Simple Pivoting Algorithm for Root-Locus Method of Linear Systems With Delay,” Int. J. Control, 53 (4), pp. 951–966.

Borghesani, C., Chait, Y., and Yaniv, O., 1995, "*The Quantitative Feedback Theory Toolbox for MATLAB*", The MathWorks, MA.