Leitmann, G., and Skowronski, J., 1977, “Avoidance Control,” J. Optim. Theory Appl.

[CrossRef], 23 , pp. 581–591.

Getz, W. M., and Leitmann, G., 1979, “Qualitative Differential Games With Two Targets,” J. Math. Anal. Appl.

[CrossRef], 68 , pp. 421–430.

Leitmann, G., 1980, “Guaranteed Avoidance Strategies,” J. Optim. Theory Appl.

[CrossRef], 32 , pp. 569–576.

Leitmann, G., and Skowronski, J., 1983, “A Note on Avoidance Control,” Opt. Control Appl. Methods

[CrossRef], 4 , pp. 335–342.

Corless, M., Leitmann, G., and Skowronski, J., 1987, “Adaptive Control for Avoidance or Evasion in an Uncertain Environment,” Comput. Math. Appl.

[CrossRef], 13 , pp. 1–11.

Corless, M., and Leitmann, G., 1989, “Adaptive Controllers for Avoidance or Evasion in an Uncertain Environment: Some Examples,” Comput. Math. Appl.

[CrossRef], 18 , pp. 161–170.

Stipanović, D. M., Sriram, S., and Tomlin, C. J., 2005, “Multi-Agent Avoidance Control Using an M-Matrix Property,” Electron. J. Linear Algebra, 12 , pp. 64–72.

Mitchell, I., Bayen, A. M., and Tomlin, C. J., 2005, “A Time-Dependent Hamilton-Jacobi Formulation of Reachable Sets for Continuous Dynamic Games,” IEEE Trans. Autom. Control

[CrossRef], 50 , pp. 947–957.

Tomlin, C., Lygeros, J., and Sastry, S., 2000, “A Game Theoretic Approach to Controller Design for Hybrid Systems,” Proc. IEEE

[CrossRef], 88 , pp. 949–970.

Osher, S., and Sethian, J. A., 1988, “Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton–Jacobi Formulations,” J. Comput. Phys.

[CrossRef], 79 , pp. 12–49.

Sethian, J. A., 2002, "*Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science*", reprinted 2nd ed., Cambridge University Press, Cambridge.

Crandall, M. G., and Lions, P.-L., 1983, “Viscosity Solutions of Hamilton-Jacobi Equations,” Trans. Am. Math. Soc.

[CrossRef], 277 , pp. 1–42.

Evans, L. C., 1998, "*Partial Differential Equations*", Graduate Studies in Mathematics Vol. 19 , American Mathematical Society, Providence, RI.

Hwang, I., Stipanović, D. M., and Tomlin, C. J., 2005, “Polytopic Approximations of Reachable Sets Applied to Linear Dynamic Games and to a Class of Nonlinear Systems,” "*Advances in Control, Communication Networks, and Transportation Systems: In Honor of Pravin Varaiya*", Systems & Control: Foundations & Applications , E.Abed, ed., Birkhäuser, Boston, MA, pp. 1–20.

Stipanović, D. M., Hwang, I., and Tomlin, C. J., 2004, “Computation of an Over-Approximation of the Backward Reachable Set Using Subsystem Level Set Functions,” Dyn. Contin. Discrete Impulsive Syst.: Ser. A - Math. Anal., 11 , pp. 399–411.

İnalhan, G., Stipanović, D. M., and Tomlin, C. J., 2002, “Decentralized Optimization, With Application to Multiple Aircraft Coordination,” "*Proceedings of the 2002 IEEE Conference on Decision and Control*", Las Vegas, Nevada, pp. 1147–1155.

Kim, Y., Mesbahi, M., and Hadaegh, F. Y., 2004, “Multiple-Spacecraft Reconfiguration Through Collision Avoidance, Bouncing, and Stalemate,” J. Optim. Theory Appl.

[CrossRef], 122 , pp. 323–343.

Hu, J., Prandini, M., and Sastry, S., 2003, “Optimal Coordinated Motions of Multiple Agents Moving on a Plane,” SIAM J. Control Optim.

[CrossRef], 42 , pp. 637–668.

Koditschek, D. E., and Rimon, E., 1990, “Robot Navigation Functions on Manifolds With Boundary,” Adv. Appl. Math., 11 , pp. 412–442.

Rimon, E., and Koditschek, D. E., 1991, “The Construction of Analytic Diffeomorphisms for Exact Robot Navigation on Star Worlds,” Trans. Am. Math. Soc.

[CrossRef], 327 , pp. 71–116.

Rimon, E., and Koditschek, D. E., 1992, “Exact Robot Navigation Using Artificial Potential Functions,” IEEE Trans. Rob. Autom.

[CrossRef], 8 , pp. 501–518.

Dimarogonas, D. V., Loizou, S. G., Kyriakopoulos, K. J., and Zavlanos, M. M., 2006, “A Feedback Stabilization and Collision Avoidance Scheme for Multiple Independent Non-Point Agents,” Automatica

[CrossRef], 42 , pp. 229–243.

Chang, D. E., Shadden, S., Marsden, J., and Olfati-Saber, R., 2003, “Collision Avoidance for Multiple Agent Systems,” "*Proceedings of the 42nd IEEE Conference on Decision and Control*", Maui, Hawaii, pp. 539–543.

Olfati-Saber, R., 2006, “Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory,” IEEE Trans. Autom. Control

[CrossRef], 51 , pp. 401–420.

Bertsekas, D. P., 2000, "*Dynamic Programming and Optimal Control*", 2nd ed., Athena Scientific, Belmont, MA, Vol. 1 .

Luenberger, D. G., 2003, "*Linear and Nonlinear Programming*", 2nd ed.Kluwer Academic, Boston, MA.

Vorotnikov, V. I., 2005, “Partial Stability and Control: The State-of-the-Art and Development Prospects,” Autom. Remote Control (Engl. Transl.)

[CrossRef], 66 , pp. 511–561.

Matrosov, V. M., 1962, “On the Theory of Stability of Motion,” Prikl. Mat. Mekh., 26 , pp. 992–1000.

Bellman, R., 1962, “Vector Lyapunov Functions,” SIAM J. Control

[CrossRef], 1 , pp. 32–34.

Michel, A. N., and Miller, R. K., 1977, "*Qualitative Analysis of Large-Scale Dynamical Systems*", "*Academic*", New York, NY.

Šiljak, D. D., 1978, "*Large-Scale Dynamic Systems: Stability and Structure*", North-Holland, New York, NY.

Šiljak, D. D., 1991, "*Decentralized Control of Complex Systems*", Academic, Boston, MA.

Lakshmikantham, V., Matrosov, V. M., and Sivasundaram, S., 1991, "*Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems*", Kluwer, Dordrecht.

Khalil, H. K., 2002, "*Nonlinear Systems*", 3rd ed., Prentice-Hall, Upper Saddle River, NJ.

Anderson, B. D. O., and Moore, J. B., 1989, "*Optimal Control: Linear Quadratic Methods*", Prentice-Hall, Upper Saddle River, NJ.